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Vortex Creation and Pinning in High Amplitude Third Sound Waves

C. Wilson and F. M. Ellis

Department of Physics, Wesleyan University, Middletown, CT 06459

Changes of macroscopic circulation induced by high amplitude, rotationally polarized
waves in a third sound resonator are measured. The results are compared 10 a model
including a simple frictional vortex drag with the substrate. A significantly larger than
expected concentration of vorticity is deposited in the vicinity of a central hole
piercing the resonator which other modifications to the model cannot address.

1. INTRODUCTION

High amplitude third sound waves excited in a cm:ular resonator can induce a
circulatory flow of the film supporting the resonance.” Unlike the similar process
which swirls a classical fluid, the quantum fluid can only change its circulation through
the creation and movement of quantized vortices. As a consequence, the quantum
swirling process is an enlightening probe of the properties of vortices in films at low
temperatures. In this paper, we compare experimental measurements of the swirling
effect in films to numerical simulations based on some simple models for the vortex

motion. :
A closer comparison of the classical and quantum mechanism for inducing DC

flow will first be useful. It will be sufficient to consider the plane wave case for this
discussion. As a traveling plane wave propagates forward in a thin fluid layer, a
linearized description of the motion has the film flowing forward under the crests and
backwards under the troughs of the height oscillations. The flow field is oscillatory
everywhere and there is no net motion of any fluid. Classical mduced flow is therefore
a nonlinear effect and a quantitative description is quite involved.> It is not hard,
however, to see where it comes from by considering nonlinear quantities derived from
the linear solutions. For example, if one includes the linearized results for the height
oscillations in addition to the oscillatory flow field, there is a slightly thicker (thinner)
film over the wave crests (troughs) where the fluid is moving forward (backward). This
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results in a net fluid flux in the forward direction proportional to the square of the wave
amplitude 1 compared to the fluid depth, h. C, is the wave speed.

2
Vdrifi =%C3(‘E] (1)

Now consider the quantum fluid picture. In order to create a forward DC flow,
there must be a polarization of vortices resulting in more left handed vortices to the
right, and more right handed vortices to the left of the forward direction. The vortices
could be polarized from an initially random distribution of left and right species or
polarized after a left-right nucleation event. In the absence of any DC flow, if the
arguments leading to (1) are to result in zero drift, the backflow under the wave troughs
must be slightly larger than the forward flow under the crests. Within such a flow,
vortices with any kind of drag interaction with the substrate or normal fluid will be
herded by "Magnus forces" the appropriate direction to increase the flow forward.
Thus, in order to create a flow, vortices must be nucleated (in pairs) if they are not
already present in the film, and must experience some sort of dissipative drag if they
are to be subsequently polarized.

The qualitative consequences of the classical-quantum fluid comparison are as
follows. Within a traveling wave, classical DC drifts will increase gradually
(quadratically) with amplitude and return to zero through dissipation after the wave
motion ends. In the quantum fluid traveling wave, there is a threshold amplitude for
creating vorticity (nucleation) or overcoming drag effects (pinning), or both. Above
this amplitude, polarization occurs, creating a flow. If the wave amplitude is decreased
to zero, the same drag effects pin the vortices in the polarized state and the flow
remains as a persistent current.

2. EXPERIMENT

The above qualitative features of quantum drift have been observed as swirling
induced by rotating waves in a third sound resonator. The third sound is resonated in a
superfluid film adsorbed on the inner surfaces of a flat, circular cavity formed between
two gold plated microscope slides. The perimeter is defined by epoxy which fills the
gap for radii larger than a=6.15min and holds the gap at 8pum. Electrically isolated
regions of the gold coating serve as capacitive transducers which couple to the weakly
dielectric helium film. Two drive regions at a 90° angular orientation allow circularly
polarized drive forces to act on odd m modes. A single pickup region is incorporated as
the capacitor of a 77Mz L-C tunnel diode oscillator so that the height oscillations in
the film can be detected with standard FM techniques. All results reported were
performed at about .1K. No systematic temperature dependence has yet to be observed.

The rotating wave modes are driven at an amplitude measured by the pickup
capacitor. Swirling can be detected while driving by observing the phase of the height
oscillations. After either some time, or a sweep through the resonance, the drive is
turned off and the precise state of the induced persistent circulation is determined by
the Doppler shift of several of the lowest resonant modes, which for the boundary
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conditions in this cell correspond 10 a wavenumber k = xg/a with x, = 1.841, 3.054,
4.201... for the Bessel function wave solutions.

In the absence of any DC flow, the resonances associated with the azimuthal
number m are ideally doubly degenerate because of the circular symmetry. For a given
flow field within the circular resonator, each mode is split according to the distribution
of DC flow relative the mode’s AC wave field and a small geometrical component. A
measured set of splittings can be analyzed to reveal a filtered knowledge of the flow
field in much the same way that knowing a few of the lowest Fourier components gives
you a filtered knowledge of a waveform.

3. NUMERICAL SIMULATION

A simple model is investigated for comparison to the experiments. Within this
model, the polarization process is assumed to have reached some sort of steady state.
The vortices are modeled as points that experience both a Magnus force and a frictional
drag.’ This simplifies the more complicated proper handling of vortices as three
dimensional flow states with microscopic structural changes responding to boundary
conditions. In the presence of the third sound wave, the vortices remain stationary
(aside from a small distortion in shape not considered in this model) until the Magnus
force applied by the instantaneous film flow speed attains the frictional drag, or

Ps Khv, = fd.mg (2)

The quantum of circulation is K and the fluid density is p; . Above this critical speed,
vortices are allowed to move such that the friction force and Magnus force balance. The
resulting vortex motion is found by solving

P K07 X (=¥, ) = ~fyg¥ 3)

for v. The drag force is associated with the substrate and taken as opposite to the
vortex motion relative to the substrate and Z- is a normal to the plane of the substrate.
The vortex follows an s-shaped trajectory during these portions of the wave cycle that
exceed the critical speed, moving perpendicular to the flow just above threshold and
picking up a parallel component with further increases.

With the linear expression for the wave velocity field, the trajectory during the
opposite phases of the wave cycle would exactly cancel, resulting in no net vortex
motion. Following the discussion in the introduction, we approximate the nonlinear
wave flow field by the linear velocity field solution scaled by the instantaneous

thickness,

L J o (kr) cos(mé — ot) - Hm'(kr} sin(md — wt)
Wr,0)=Cy | Kt )
h l+glm{kr)ms(m¢— )
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forcing zero mass flux by proportionally reducing the flow field under regions of thick
portions of the film oscillations and increasing the flow under thin portions. This
introduced nonlinearity now produces a net vortex displacement because of the
asymmetry in the flow throughout wave cycle.

The swirled equilibrium is then taken as the distribution of vortices throughout
the cell that result in no net vortex motion at any radius within the cell. This model
does not address the problem of creation, but attempts to estimate what kind of vortex
densities can be expected once creation is acknowledged.

4. COMPARISON OF EXPERIMENT AND SIMULATION

The data in Fig. 1 show the results of a series of sweeps through the lowest two
modes at increasing amplitudes. The measured height amplitudes have been converted
into the wave flow field peak velocity for each mode. The m=2 mode (squares) appears
to swirl at a lower peak speed than the m=1 mode (circles). This interpretation can be
deceptive. The simulated equilibrium for peak flow speeds 10% above the critical
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Fig. 1  Onset of the swirling in a 4 4nm filn for the m=1 (circles) and
m=2 (squares) modes. The peak velocities are deduced from the
capacitive measurement of the thickness oscillations and the equations of
motion.
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velocity result in average splittings that are about five times larger for the m=2 mode
than the m=1 mode. The m=2 mode is apparently much more efficient at swirling.

The solid curve of Fig. 2 shows the flow field deduced experimentally for the
(2,1) mode also at h = 44nm film. The splittings were obtained after driving at
amplitudes reaching 1.6 nm (peak wave flow of 129 cm/s) over the course of 10 hours.
At these large amplitudes, the (2,1) mode occasionally exhibits chaotic behavior and is
difficult to maintain at a fixed amplitude. A simulated flow field produced with the
same wave amplitude is shown as the dashed curve. The critical velocity used was 115
cm/s and adjusted to maximize the average Doppler splittings. Finally, the dotted
curve is a classical result using the methods of Eq. (1) applied to a circular resonator.

It is apparent from the experimental results that the vortices are quite stable
even in the presence of flows in the vicinity of several tens of cm/s. The density of
pinning sites is on the order of 104/cm2, as deduced from the flow fields.

The comparisons presented in Fig. 2 demonstrate a discrepancy consistently
observed between the experiment and our simulation: the experimentally determined
flow fields require a much larger concentration of vorticity in the center of the
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Fig. 2 Azimuthal induced flow for h=4.4nm in the m=2 mode: as
measured by the Doppler shifts of the lowest three modes (solid);
calculated from the vortex drift simulation (dashed); and compared to a
classical result (dots). The wave amplitude oscillation in all cases was
1.6nm. Np is the number of vortices trapped in the hole.
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resonator than either the simulations or the classical results suggest. These
discrepancies occur for both (1,1) and the (2,1) modes, the only modes capable of
swirling the film in our resonator. In terms of the fundamental results, the splitting of
the (1,1) mode, which is dominated by circulation trapped in the central hole, is
consistently larger than expected by any model of vortex motion so far studied. This is
especially remarkable for the (2,1) swirling where the wave flow fields are reduced to
zero near the central hole, and there is little one can imagine that would contribute
significanty to their being forced together in that region against their mutual repulsion.
Several more complicated vortex interactions have been added to the model including a
viscous type drag term and an increased pinning friction in the hole. Nothing seems to
be able to overcome the absence of significant wave flow in the center of the resonator.
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