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Chapter 1 Introduction

This chapter presents a brief introduction of helium, superfluid
helium and its physical properties. It also gives some general discussions of
superfluid films in order to give some background in this field. More details

of this chapter can be found in references at the end of this paper.

1.1 Helium

The helium atom is a particularly simple, stable and symmetrical
structure. The nucleus contains two protons and two neutrons and has no
resultant momentum or magnetic moment. Helium is the only element
which remains in a liquid state near absolute zero. The first successful
liquefaction of helium was accomplished by Kamerlingh Onnes(1908). Solid
helium cannot be made merely by reducing the temperature of the liquid, but
a pressure of 25 atmospheres must also be applied. The cause of this
phenomenon is easily understood. Researchers like Simon (1934) have
shown that this is a consequence of the large zero-point energy of the liquid
and the quantum effects.

Fig.1.1 shows the phase diagram of helium-4 in the PT plane [1.1]. The
ordinary triple point between the solid, liquid and gaseous phases does not
exist for helium, but there exist two other triple points at the ends of the J -
line which separates liquid helium I from liquid helium L. Liquid HeIT'is
called "superfluid " and the other "normal fluid". Helium-4 in the
superfluid phase displays many interesting properties which physicists have

studied for about 90 years.
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Fig. 1.1 The four states of 4He inthe P-T plane. The A -line at zero
pressureis 2.17 K.

1.2 Superfluid Helium-4

The most remarkable of the properties of liquid HeH is its
"superfluidity”, which was discovered simultaneously by Kapitza and by
Allen and Miséner (1938) . The experimental results show that helium flow
through a fine channel does not show any pressure difference between the
two ends. This implies that helium has no viscosity in the liquid H, II phase
(1 <1011 poise) [1.2]. This is just like the superconducting phase in metal
where electrons move freely, here helium atoms flow freely.

The other properties of H.II include the A shaped heat capacity
(see Fig. 1.2) [1.3] and thermomechanical effect. In the former, a peak was

observed at the vicinity 2.17K. The shape of the specific heat versus
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Fig. 1.2 Some thermal properties of liquid helium - 4 along the
saturation curve. (a) Entropy; (b) specific heat; and {(c) heat of

vaporization.

temperature curve resembles the shape of the letter | and therefore the
singular point at this curve is called ) - point. Atthe } - point no latent
heat, characteristic of a first - order phase transition, was observed. This
result was indirectly verified by a wide variety of experiments.
Thermomechanical effect, or Fountain effect, was first observed in 1938 by
Allen and Jones [1.4]. Thermomechanical effect is a rise above the bath level
of the fluid in a closed capillary which is heated at the open end. For large
heat flux, the fluid drops due to increased vapor pressure. For small heat

flux, however, the fluid rises above the level of the fluid in the bath. A more




dramatic effect can be seen if the capillary is open at both ends. When the
lower end is heated, as by incident radiation, the fluid flows up and out of the
other open end, producing a fountain of fluid.

The experimental results shown above give a clear picture that helium
II must have some microscopic structure which is different from ordinary
liquid, and that quantum mechanics must be considered in the study of

helium II
1.3 Superfluid Helium Films

One of the most spectacular transport properties of liquid helium I
was first noticed in 1922 by Kamerlingh Onners, but not properly identified
until nearly 15 years later by Rollin and Simon. This observation was
essentially that if an open container is partially immersed in a bath of helium
I so-that the liquid levels inside and outside the container are initially
different, then the two levels equilibrate surprisingly rapidly. This
phenomenon is illustrated in Fig. 1.3 for the two possible types of initial
conditions.

This means that any solid surface in contact with helium-4 bath will
form a helium film, typically about 100 atoms or 30 nm thick. The property
of the film which has been of chief interest is its thickness, d, as a function of
height above the bulk liquid level and of temperature. Measurements of film
thickness, primarily by Jackson and co-workers, have given the following
results: In the helium II region, d decreases with H, the height of the film

above the liquid surface, according to the relation :

1
dg[i]“
gH (1.1)
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Fig. 1.3 Flow of the mobile He II film in (A) emptying and (B)
filling a beaker.

where index n would vary from 3 in very thin films (d=1nm)to 4 in
thick films (d =30nm ), g being a constant whose value is determined by
the material of the wall. The van der Waals forces were dominate in this case
since all other forces are small. The conclusion is that helium films can
creep anywhere in the superfluid helium II phase.

The property of the film described above gives us a chance to stabilize
the film by building a large surface reservoir in a sealed container with a
filling line. In this circumstance, a little disturbance like a very small
temperature change can not make a big difference inside of third sound
resonator. This technique V_has been used in our experiment to form very
stable thin helium films,

The measurement of film thickness is not easy although the definition
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of film thickness is quite simple, which is :

_ Volme
Area

d

This, however, is for the perfectly flat reservoir. The surface of the reservoir
always has some capillarity and microscopically. In our resonator, the van
der Waals constant must be determined to find the film thickness. The
theoretical calculation of this constant with different substrates have been
done by Zaremba and Kohn in 1976 [1.5] . Direct measurements of van der
Waals constants show that some have a good agreement with theory and
some do not [1.6 ] . Our measurement of the van der Waals constant was in
slight disagreement with the theory and previous work done by P. Leiderer (
private communication ). An accurate knowledge of the film thickness still

remains a problem.
1.4 Rotation of Superfluid.

When the two fluid model of helium I was first suggested, it was
generally believed that it would be rather difficult to set the superfluid

fraction into rotation because superfluid flow was characterized by the

irrotationality condition introduced by Landau [ 1.7 ]

Vxv. =0 (12)

To see how the above result comes about, we introduce the circulation, which

is defined. as the integral:

§Vﬂ Nl l_’ (1.3)
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taken over any closed circuit in a fluid. According to Stoke's law, the
circulation around any infinitesimal circuit in a liquid may be written as an

integral over the surface § enclosed by the contour :

§vial = (Vv )-d s (1.4)
and, combining equations (1.2 ) and (1.4 ), we find
K"—'EFLVS ‘dl :O (1'5)

indicating that the circulation for any contour in the continuous field is zero.
This condition of zero circulation can only be satisfied if ?rs vanishes
everywhere. However, several experiments have shown that the whole mass
of helium II in a bucket can be set into a state of uniform rotation{ 1.1 ]. The
rotation of the superfluid can be satisfactorily explained by assuming that it is
threaded by a series of parallel straight vortex lines. Contours which enclose

a solid obstacle or a vortex core can vield a quantized circulation,

where n is infeger, h the Plank constant and m4 the mass of helium-4.
1.5 Superfluid Circulation and Quantization.

Two experiments strongly suggest that the circulation in helium 1T is

quantized. In the first, by Vinen [ 1.8 ], the helium was contained within a
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vertical tube, along the axis of which was stretched a fine metal wire. Fora
perfectly uniform wire, in the absence of circulation, the modes of vibration
of the wire are doubly degenerate. If, however, there is a circulation
around the wire, the associated Magnus force [ 1.9 ] will remove the
degeneracy; and the wire vibration in two circularly polarized modes
differing in frequency can be detected.

Following Vinen, a similar experiment has been made by Whitmore
and Zimmermann [ 1.10 . They show clearly that in a multiply connected
region, helium II not only can have circulation but is also quantized.

The fact that bulk superfluid helium - 4 in a superleak could be set into
a persistent flow was demonstrated by Mehl and Zimmerman [ 1.11 | and
Reppy and Depatie [ 1.12] . A few years later, persistent bulk flows were
confirmed by Van Alphen et al. [ 1.13 ] using a different technique. The first
observation of persistent flow in a helium film was made on an unsaturated
films by Henkal et al. [ 1.14 ]. Persistent currents in saturated films have
proven to be more elusive. Wagner has reported a failure to observe
persistent saturated and unsaturated film currents in his specific geometry
[ 1.15]. This was not without precedent, since Wang and Rudnick have
previously reported a failure to observe persistent unsaturated film currents
in a specific geometry {1.16 ]. Several years later, Kim and Glaberson have
also claimed they were unable to observe rotation induced persistent currents
in a circular third sound resonant cavity [ 1.17 ] . Although some groups have
reported that they observed persistent currents in helium - 4 films, no one
has previously made an observation of.persistent currents in any third sound
resonator. We have made a successful measurement of circulation of
superfluid film in a circular cavity third sound resonator using a rotational
drive technique.” The primary reason we built this system was to try to detect
a single quanta of two dimensional superfluid circulation around the center

hole of the resonator. This is actually following Vinen's experiment in
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which he found a single quanta of superfluid circulation around a fine wire
in bulk liquid helium II { 1.18 1. Later on, we have utilized this technique to
estimate the distribution of vortices and the effect of geometrical asymmetry
to the total mode splitting.

This' thesis has overviewed almost all former works on superfluid
helium films and established our own theory and experimental system on a
rotational drive third sound resonator. Chapter 2 introduces the basic ideas
of this work. Chapter 3 gives the details of mode splitting mechanisms and
some calculations on how the detection system should behave. Chapter 4
presents a calculation of rotational drive technique and gives the theoretical
prediction of experimental results. Chapter 5 describes the experimental set
up and, finally, chapter 6, discusses experimental results. The experimental

results are exactly what I anticipated in the theory.
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Chapter 2 Third Sound

This chapter introduces the two - {fluid model, the important postulate
which explains almost all phenomena for liquid helium. The next section is
about the propagation of sound waves in liquid helium II. Finally, the theory
of third sound will be derived from the equations of motion of liquid

helium. The early experiments of third sound are also discussed here.
2.1 The Two - Fluid Model

Many properties of helium IT have already been introduced in chapter
1. All those can be understood in term of the two - fluid model. This was
first proposed by Tisza [2.1 | on the basis of London's application of Bose -
Einstein condensation to helium- 4 . The basic two-fluid equations of motion
were originally put forward by Landau [ 2.2 ] . The two - fluid model
- postulates that liquid helium II behaves as if it were a mixture of two fluids
freely intermingling with each other without any viscous interaction. These
two fluids are termed the normal fluid and the superfluid, and have densities

P. and 2, such that

Pnt Ps= P 2.1

where Q is the ordinary density of liquid helium. The normal density p. is
a function of temperature, and increases from zero at absolute zero, to the
value P at the lambda point. Conversely, the superfluid density is zero at
the lambda point and increases to the value P at low temperatures. This is
illustrated in Fig. 2.1 as the ratio of these densities. Note that the liquid is
almost entirely superfluid below 1 K [2.3]. London noted that the ideal
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Bose gas Bose - Einstein condensation transition temperature ( 3.12K) was
remarkably close to the superfluid transition temperature ( 2.17K ) in helium-
4 and suggested that the superfluid component was the Bose condensation.
[ 2.4 ]. The normal fluid, then, is a gas of quasipartical excitations in the
helium-4.

In addition, the model also postulated that superfluid carries zero
entropy, and has no resistance whatever to its flow. The essential parameters

of the model are shown in the following table,

Normal fluid P n=1. Se= Sh‘e
Superfluid p. n==0 S.=0

10

0.6

0.4F

0.2

¢ 0.5 1.0 1.5 2.0 25
Temparature {K)

Fig. 2.1 Andronikashvili's experimental result for the ratio of fluid

density versus temperature.
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where T is viscosity. Although the two-fluid model is phenomenological,
its equations of motion have been extremely successful in providing

explanation for the remarkable properties of helium-4.
2.2 Propagation of Sound Waves in Helium -4

Liquid helium is capable of supporting several sorts of waves motion.
In order to simplify notation applicable to the various modes, all are called
“sound” but are differentiated by a numerical prefix. Thus, the an ordinary

acoustic waves - is called "first sound", with a velocity Cy given by:

czl B (g%)s (2.2)

It is characterized by a density oscillation at approximately constant entropy
with the two fluids moving together. The first measurement was made by
Findlay, Pitt, Grayson - Smith and Wilhelm [ 2.5 ] using a standing wave
technique.

Second sound -- an oscillation of the superfluid fraction with respect
to the normal fraction makes this wave a temperature wave, propagates at

almost constant total density , and is given by

2 Ps T82

G =5 C, (2.3)

The two fluids move in antiphase in order to keep the net flow of mass at
zero [ 2.6 ]. Second sound in helium II was observed first by Peshkov in 1944.
Atkins predicted the existence of two more propagating waves modes

in helium II [2.7 ], third sound and fourth sound. We start to describe
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fourth sound first because it is closely related to the first and second sound.
Fourth sound is a pressure wave in helium II inside a porous medium
where the normal component is viscosity locked to the substrate and only the
superfluid is in motion.

The velocity of fourth second is given by :

Pr 2

2 P 2
G+ 56 (2.4)

¢ =%

Fourth sound has been observed by Rudnick and Shapiro in 1962 [ 2.8]. It
has been used to study persistent superfluid currents of helium II' [ 2.9 ] and
as a crucial demonstration of the superfluidity of liquid helium-3. These

sound velocities in helium II as a function of temperature are illustrated in

Fig. 2.2.

FIRSY

|
4
{

g

»
<
,

[ ]
Q
s
et

VELOGITY — METERS PER SELCOND
&
o

$2CON0
BOUND

s
o

] 0.8 .o Ls .0 ts
TEMPERATURE — °x

Fig. 2.2 The sound velocities in the helium 11 versus temperature.
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Surface waves on liquid helium II film, is called third sound. The

study of this wave is the basis of this thesis.

2.3 Third Sound Theory and Experiment

Surface waves on bulk liquid helium were first discussed by Atkins
[2.10 ], in order to explain the variation of surface tension with temperature.
A few years later, he published an article which discussed the possible
existence of an undetected type of wave propagation in liquid helium II
[2.11]. In 1964, "third sound", a surface wave on thin films of superfluid
helium , had been demonstrated experimentally. Now third sound is used
as a powerful technique to measure other properties of superfluid helium.
For instance, the measurement of Van der Waals force between helium
atoms on different substrates, the study of spin polarized hydrogen, and the
nonlinearity of helium films.

Third sound is a surface wave on a helium film, in which the
superﬂuid component oscillates while the normal component remains
locked to the wall. The free surface of the third sound relieves the
compression that characterizes fourth sound. Fig 2.3 shows a fixed substrate
with a third sound wave. The forces on the film include gravity, surface
tension and Van der Waals force. The latter dominates both gravity and
surface tension forces when the films are thin and the wavelengths are long
and is the only restoring force considered in this treatment. This attractive
force is due to the induced dipole moments between the substrate and the
film atoms.

The attractive part of the energy well in which a helium atom sits

above a flat substrate is: [ 2.12 ]
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Fig. 2.3 Third sound wave propagate in the liquid helium film.

(2.5)

where  is the van der Waals constant, d is the distance between atom and

substrate. Therefore, the restoring force will be :

f=- (%_) - ‘? (2.6)

This restoring force, however, will allow an oscillation in the thickness of the

film with variations in pressure and temperature. Third sound is therefore
somewhat similar to classical shallow -water waves, but the superfluidity of
liquid helium is essential to its existence since such a wave would be rapidly
attenuated in a thin film of an ordinary viscous liquid.

The next section, the two-fluid equations are presented which predict a

20




traveling surface wave, the third sound wave.

As we have already discussed before, we can treat a superfluid helium
as composite of two inseparable fluids, a superfluid part and a normal part.
The densities of the two component fluids sum to the fotal density of the

helium fluid.

Each of these fluid components possess a velocity field: V,,V,.[213] The

total mass current for the fluid is :
J = psV,. + p,,Vn 2.8)

and so mass conservation is expressed as

- J 2.9)

Since entropy is-only carried out by normal fluid, we can write entropy

conservation equation like:

M:_ﬁ.(psvz)

Jt (2.10)

where S is the total entropy per unit mass.

The Navier - Stokes equation for the total fluid is [ 2.14 ]
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p. [%4 + f&/?-ﬁ}/i}+pn [%v;+(/: : ?}/Z} =-Vp +nV¥V,

(2.11)

where P is the pressure in the fluid and 7 is the viscosity of the normal
fluid.

The Navier - Stokes equation for the superfluid should not have a
viscosity term since the superfluid flows without viscosity. The superfluid
component has been found to respond to both temperature and presstire
gradients. This suggests that chemical potential of the fluid drives the fluid.

These considerations result in an Euler equation for the superfluid [ 2.14 ]

i;,er(;,s.v);sx_v;n—%VP-rsVT

dt (2.12)

Equation (2.11) and (2.12) imply the Navier - Stokes equation for the normal
fluid to be

o, - el P B
pn[at +6/n-V)Vn}m—pVP+pSSVT+nV:’Vn

(2.13)

These are simplified equations for the two - fluid model. More general
equations are discussed in Landau and Lifshitz [ 2.15 1 and in Khalatnikov
[2.16] . The velocity of a third sound wave can be calculated from the two -
fluid equations out lined above.

As we discussed previously, the velocity of the superfluid component

7, is parallel to the substrate that we assume here is X-direction, which is

also the direction of propagation of the third sound (Fig. 2.3). Assume also
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that the motion of the superfluid is irrotational everywhere [ 2.17 ], so that
V. does not vary in the Z direction perpendicular to the wall and the
surface. The width of the film in Y - direction is W, the height of the surface
above its equilibrium position is h'(x) and the temperature of the liquid is
T=Ty +T'(x) , where Ty is the mean temperature and T'(x) is the temperature
oscillation when third sound is propagating.

The equation for conservation of mass is derived from the following :
consider a slab of the film between x and x + & . The rate of flow of mass

of superfluid across the interfaces at x and y + & is

dm v,
o= (Ps)Wd( x )5" (2.14)

We do not include that the slab loses mass by evaporation at its surface.
In fact, the amount of evaporation at lower temperature , say below 0.2 K, is
negligible, but at temperature around 0.5K begins to be noticeable. { 2.18 ]
The net change in mass of liquid in the slab due to flow does not

change the density but does change the height of the surface h

dm _
[_p

si%e

ax (2.15)

combining equations (2.14) and (2.15), the equation expressing conservation

of mass is finally found to be

dh Ve
poy P =0 2. 16)

The equation of conservation of entropy must contain the assumption

made by the two - fluid model that the normal fluid component carries
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entropy and superfluid component does not. In our case, normal fluid is
locked on the substrate, so, if you look at the surface of the film from the top,
it is easy to conclude that the entropy per unit area is not dependent on time,

because there is no lateral entropy flow. This means

d —
E(pSh)_o 2.17)

S is entropy per unit mass, h is thickness of the film. Therefore, assuming

the fluid as a whole is incompressible,

dh ds
@ thg =0 2.18)

Introducing a thermodynamic relationship

C
as = T——d]‘
ds  C dT
dr — T dr (2.19)

where C is heat capacity per unit mass, inserting this into (2.18), results in

na T T a -V (2.20)

The equation which approximately describes the dynamics of the
superfluid film is known as Euler's equation. It is the linearized version of
( 2.12 ) which relates the horizontal acceleration of the surface wave to the

pressure and temperature gradients which cause this acceleration.
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v, i
= :—?VPqL SVT (0. 21)

The pressuré change here is just the hydrostatic change in the van der Waals

field,
OoP = pfoh (2.22)

If we consider only the x - component of equation (2.21) and using (2.22), we

get

v, oh ar
7R v i (2.23)

Equaﬁons (2.16) , (2.20) and (2.23) are three equations for the three
unknowns h, T and Vs. One can solve the equations by assuming some
travelling wave solutions.

If one considers a plane wave moving through the film and that the
film parameters have only small oscillations, then we can write solutions

like :

h =h, +h'e’lFx-ot) h’ << h,
7o o 4V e tlirmet) V<<V,
[ =7, +7T etk -of) T <<T, (2.24)

Substituting (2.24) into equations (2.16), (2.20) and (2.23) , we get three
homogeneous linear equations. They have non-zero solutions only if the

determinant of the coefficient matrix is set equal to zero. That is :
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P (2.25)
Therefore, C3 , the third sound velocity, is defined as
2
c =9 _(Bg[fhﬁﬂi}
K P C (2.26)

where the inside of the square root, the first term corresponds to the
substrate restoring force, and the second term represents the
thermomechanical restoring force. Usually, the second term is much smaller
than first term. For instance, at a warm temperature of 0.5 kelvin and an 8
layer film, the thermomechanical force is still only about 100 times smaller
than the restoring force. Therefore, in this thesis, I disregarded all

thermodynamic terms.
2.4 Discussion.
From equation (2.20) we can easily get

h"

by

cr’
5T (2.27)
This equation clearly shows that the surface wave is accompanied by a
temperature wave which is out of phase with it. This means the fluid in a
third sound wave is cold at the crest of the wave and warm in the trough. In

the other words, the higher temperature corresponds to the smaller film

thickness. This also shines some light on the attenuation mechanism. If
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there is any heat conduction between the film and substrate, the surface wave
will decay. Film evaporation and lateral heat conduction are the other
attenuation mechanisms. In all cases the surface wave's energy is reduced.
The very low experimental temperatures made both film evaporation and
lateral heat conduction are very small. Therefore, these processes were
neglected in the calculations.

Another important point is that all second and higher order terms
have been omitted during the calculation. The details of this calculation,

which include dissipation terms can be found in Bergman (1971) [2.19].
2.5 Solution for 2 - D Circular Third Sound Resonator

The calculations in section 2.3 are based on the one dimensional case,
so the solutions of equation of motion are plane waves. In fact, the third
sound resonators that were used in our laboratory are disk shaped circular
resonators. The solution for this case is not a simple plane wave, but more
complicated, it is a combination of Bessel functions and trigonometrical
functions. In our resonator, the film is adsorbed onto the inner surface
formed by two circular disks joined at their perimeter. The normal modes of
the thickness oscillations of the third sound wave are given by,

im ¢

h(r,gb) =.h0 +h,. J, (kn r)e (2.28)

m

where r and ¢ are polar coordinates, a is the radius of the resonator,

and knm and m determine the modes configuration. For our resonator

"a (229)
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Here xnm is a zero of the derivative of a Bessel function, J (x). The static
film thickness is hg . There are two modes associated with + m and - m.
These modes are degenerate and have the same resonant {requency.
Appendix C describes the simple coupling of these modes to
capacitive transducers. Chapter 4 describes the coupling to a more

complicated drive capacitor.
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Chapter 3 The Frequency Splitting

This chapter deals with the basic idea of frequency splitting. It turns
out that the frequency splitting is determined not only by the Doppler shift
which is caused by the film flow but also the geometric configurations of
distortions in the shape of the resonator. Both of these effects are shown to

determine the normal modes.
3.1 Circulation Splitting of a Third Sound Resonator

In a geometfrically perfect resonator with no circulation, there will be
no frequency shift, since the eigenstates of the mode are degenerate. But if
either of these conditions - perfect geometry and no circulation - is not be
satisfied, frequency splitting can not be avoided. The circulation of helium
film in a two dimension system was discovered long ago. Doppler shifted
third sound pulées have served for years as a probe of the flow state in these
films. Here, a thermal drive transducer is flanked by pick-up bolometers
upstream and downstream from a drive heater and the difference in arrival
times of a third sound pulse determines the film flow speed. The
development of third sound resonator [ 3.1, 3.2 ] greatly improved the
potential precision of these measurements because of the inirinsically
superior accuracy of resonance techniques over time-of-flight measurements.
Unfortunately, the closed and restricted geometry of resonators does not lend
itself easily to persistent current applications. Earlier experiments
incorporating third sound resonators of various geometries on rotating
cryostats have failed to show the expected splitting of resonant modes even
when the presence of a film flow was evident by other means [ 3.3 ,34].

Persistent current splitting of other superfluid sound modes have been
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observed [ 3.5 ] but not in two-dimensional films.
Our work with the third sound resonator described in chapter three
has shown clearly this splitting in the two dimensional case. The frequency

associated with the third sound velocity which we try to detect was
o= Ck (3.1)

where k is a wave vector which is dependent on the mode configuration and

the radius of the cell.

ka = X (3.2)

nm

Here a is the radius of the cell as before, and X, in this case is the zero of

the derivative of J,(x), so we can rewrite the frequency

CX o
@, = "¢ (3.3)

The modes with m having opposite signs are degenerate in the ideal case.
The degeneracy may be lifted because of the Doppler shift if there is a
background film flow. The resulting resonant frequency shifts for arbitrary
resonator geometries and flow field are difficult to calculate but for small flow
speed perturbation technique can be used. For the circular resonator with the

curl free, symmetric flow field

V(r);vo(r):zve(a) (3.4)

the shift for small v, can be written as
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@, Cs (3.5)

where 7, is a constant which represent the weighing of the Doppler shiff
within each mode and includes a factor of p,/p , the superfluid fraction. In
order to get this constant 7, , we have to work on the equations of motion

again and use perturbation technique. First, recall Euler's equation for flow

field with velocity v, which is

% (o ey
-gvt—-I-(vs-V)Vs:—th | (3.6)

— -

here we must keep the convective derivative term (Vs ’ V) v, because of the
steady state flow.

Another equation we can get from the condition for the
incompressible fluid, is:

V.&=0 (3.7)

One can express this equation in a two dimensional form,

v ._. av,
s V(XY )+ =0 (3.8)
Now, integrating both sides of equation ( 3.8 ) along z-direction,
A - A avm
J‘gvzy-vs(x,y)dz{—'[o—ﬁdz—ﬁ (39)
and assuming the lateral velocity is not dependent on z-direction, we can
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treat the function inside the first integral as a constant. Therefore, ( 3.9 )

yields,

n(V,, 'ﬁ)*“%!izo (3.10)

The velocity in z-direction at the substrate should be zero because the fluid
can not go anywhere, but at the surface of the film the velocity should be the

same as the height oscillation of the film, this implies,

QL

h .
Fr== MV -7) (3.11)

(3.6) and ( 3.11 ) are the equations we are going to use to get the constant 7, -

Now, if we assume the solutions are,

h=h,+ B (3.12)

E;zﬁ‘o(r)-i— v (3.13)
with :

- nh

Vu(r)= m4r & (314)

obviously,. Vy(r) is the stationary flow field which is only dependent on the

radius r. Its 'dii'eétion is along @, the polar direction. The oscillations h'
and - are assumed to be small.
Substituting (3.12) and (3.13) into (3.6) and (3.10), and dropping

all second order terms, one finds out,

Q

-
Vv

dt

=~ fVh =V(7,-7") (3.15)
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dh N
W:—he(v"))“hv'vn_vo'v‘h {3.16)
Since h' and ¥ are time dependent variables, we suppose they have the

form Ue '" where U represents both h' and ¥ asa3-D vector.

Perturbation theory tells us that we can suppose both of they like this :

o, +Am)

U:(Ua+5U)e"i{ (3.17)
where U is the solution for (3.15) and (3.16 ) with vg = 0. Putting this back
to the equations (3.15) and (3.16 ), one finds ( private communication

with Dr. Ralph Baierlein, see appendix D for details ) :

Ao V(@ 2mX,, [ J,Gx) 1 }
ml

- dx — =&
@ CGo(x - (X ¥ 8

(3.18)

So the weighing of the Doppler shift within each mode can be written,

2
2mX,, m J (x) 1
Yom = 2 2 [I X dx — §6m }
(x?,. - m¥)J, (X)L (3.19)
then we can have :
bo _, v (a)
® oo, (3.20)
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Table (3 -1) gives some results of Yam for several different modes
calculated from this expression. It clearly shows that v, approaches 1 as
m increases. This can be understood in the following manner: since 7.
can be thought as the overlap of the flow field with the modes, when m

increases, the modes in the middle section will move toward to the

perimeter of resonator. Therefore, v(r) approaches to V(a). This
overlapping becomes maximum at the perimeter, so 7.. approachesto 1.
It is difficulf to explain why the (1,1 ) mode does not follow this role.
From the calculation, the (1,1 ) mode has an extra term, which came from
the contribution of the flow singularity in the center of the cell. Therefore, it
makes a smaller value than the other modes. This behavior of the ( 1,1 )

mode was also observed experimentally.

N 1 2 3 4
M
1 0.709 1.421 1.470 1.494
2 1.179 1.336 1401 1438
3 1.129 1.286 1.354 1.395
4 1.106 1.251 1.319 1.362

Table 3 - 1. Some theoretical results of Y., for several different third

sound modes.
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3.2 Geometric Asymmetry Splitting.

Initially we did not appreciate the importance of the geometrical
asymmetry splitting. But one day we accidentally made a cell where its center
hole was not perfectly lined up. We decided to use it anyway. When we did
use it, we got a very large splitting which we had never seen before. There
was no evidence to show this was a circulation splitting. The total splitting
was dominated by hole misalignment, and there was no way to see the
circulation splitting because it was so small compared to this. We then
decided to switch to an almost identical cell except this time the hole in the
center was perfectly aligned. We have not seen such a splitting again even
when we have tried different runs and have changed again to other cells.
This told us that geometrical asymmetry plays a role in the mode splitting.
We then had to reconsider our theoretic model to take this factor into
account.

Assume that the geometrical asymmetry is due to a small deviation

from a circular perimeter, i.e. , that the radius of the resonator edge is given

by

r(¢)=a[l+ n(¢)] (3.21)

together with two conditions: n(¢)<<1 , and the angular average of 7?( ¢ )
equals to zero. Then first order perturbation of boundary conditions of the

degenerate modes gives

M=A=ilAm|

@y (3.22)
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-2imy¢g

1 in '
A, = E." n(9)e (3.23)

il

There are many other ways that a geometric asymmetry can be represented.
Even driving a third sound resonator by a DC voltage can cause a mode to
split due to the average attractive force acting on the film. In general, the
asymmetries can always be represented in the above form. We then can take
into account this effect to the total splitting and quantitatively determine

how this will affect our experimental results.

3.3 Total Splitting.

I have already introduced the two parts of the splitting. Now let us
think about both of them acting together.

There exist two types of waves inside of a circular resonator. One is a
standing wave where the wave can have two modes propagating along
either X-direction or Y-direction ( see Fig. 3.1} . Both of them represent height

oscillation in the Z-direction.

Fig. 3.1 Two possible modes of standing waves.
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The other wave is called a travelling wave or rotating wave, which involves

both height oscillation and lateral propagation along (:;J - direction. This
wave also can have two modes which are rotating either clockwise or
counterclockwise ( see Fig. 3.2).

So, basically we have two bases which can be chosen for the calculation
of total splitting. For convenience, we decided to use the rotational basis.
This analysis is the same as any simple two level system, since the coupling
between modes other than the split + m mode is negligible. Considering
the frequency as the eigenvalues of a 72 matrix, the calculated shift given
by (3.20 ) will be diagonal elements in the rotating basis, but geometrical
asymmetry splitting must be diagonal in the standing wave basis since it is a
consequence of the shape of the fixed resonator. This splitting will appear as
off-diagonal elements in the rotating basis. Therefore, for a perfect resonator,
i.e. no geometrical asymmetry, and no background film flow, the degenerate

state can be associated with the matrix,

Fig. 3.2 Two possible modes of travelling waves.

37




w, 0O
{O W, (3.24)

The eigenvalues of both eigenstates of course would be the normal resonant
frequency %, .
If we take into account for the splitting due to a circulation of fluid, we

now have modes determined by the eigenstates of

[wo 0} [y 0]
+ w,
0 w, 0 -7y
(3.25)

where:

Y=o, (3.26)

represents strength of circulation splitting ( 3.18 ). Finally, taking into account

both the circulation splitting and geometrical asymmetry splitting , we have,

I+y A,
aJ *
LAl I-y (3.27)

constructed to give standing waves as eigenstates when y =0 according to
( 3.24 ). The eigenvalues and eigenfunctions of this matrix are the resonant

frequencies and the two nondegenerate rotational states.
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3.4 Discussion.

Having chosen for our basis, the left and right rotational states, the
eigenfunction can be expressed as a linear combinations of these states. This

will lead to

—im &

Won = 8gun € TG 0 (3.28)
where o has only two values, which are + 1 and -1, representing the
higher and lower frequency modes. Here *m  represent two different
rotating states, which are also our basis.

To find the eigenvalues and eigenstates, we must have solve the

equation

1+7 Aeiﬁo a in _laﬂn
Ae o 1-y |la_, a_, (3.29)

where Ae™* represents the geometrical asymmetry ( 3.23 ). Here A is a real

number and ¢, is some phase shift, which is related to the cell asymmetry

orientation only. It is easy to find the eigenvalues from equation (3.29),

Aimliw/y2+A2. (3.30)

Then we can find our eigenstates, that is,
[a o ] [ Ae'?e }
=N
a., —y Ay +A? (3.31)
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Where N is the normalization factor. The wavefunction can be chosen to

satisfy the normalization condition

1 2

_— * =1
2 ﬂ: 0 wqm chm d ¢ (3‘32)

Substituting (3.28) to (3.32) we have:
a'a +a _a._ =1 (3.33)
This leads to

1

\/2(724—1&2)?2?1/3/24—42 (334)

N =

Therefore, ( 3.31 ) can be rewritten as

; to
|:a o j| B 1 Ae 2

- i te
Ao | 2672078 |(Lyigole 2 (3.35)

where 8=4/y*+A? is defined as the total splitting. Note here that we break

2*% into two parts in ( 3.35 ), which is fine since it does not change the

normalization. The eigenvalues and hence the resonant frequencies are

given by
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(3.36)

2
=, {Iiw/yz +A2]: w, {Ii (AwJ +A?

When we recall equation (3.5), we have

2
ynmvok 2
wz%[li\/( @, )*A mj (3.37)

Equation (3.37 ), however, represents a clear relationship between two kinds

of splitting and resonant frequency. A plot of resonant frequencies versus the
circulation speed v, can be found in Fig. 3.3. At low circulation speeds the
splitting is determined by the geometrical asymmetry. The eigenmodes,
similarly, are the standing waves. This can be checked from equation { 3.37 ).
When y is small, the total splitting is about same as geometric splitting, and
the two eigenstates tend to be about same but out of phase. This exactly
represents the standing wave in the resonator. At high circulation speeds
the splitting is as in (3.5) and the eigenmodes are the travelling waves. If

we rewrite equation ( 3.37 ) like

2 K 2
@ — W
Q — ’ynm VG + Ail
Wy Wy (3.38)

can be noted here that the geometrical splitting from ( 3.38 ) is a fixed ratio

with respect to the two resonant frequencies whereas the Doppler shift is a
fixed difference ( see Fig. 3.3 ). Fig. 3.3 shows that geometric asymmetry
splitting can prevent measurement of small circulations. To overcome this
problem, a technique which use an applied DC voltage or heat to cancel out

the geometric asymmetry splitting is being developed. This is because the
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third sound wave is both a temperature and a height oscillation and
perturbations to either may be made to cancel the degeneracy. Preliminary

resulis were favorable, more information of this technique can be found in

Reference [ 6.3 1.

Frequency Shift

Flow Velocity at Outer Perimeter V,

Fig. 3.3 The solid lines show the normalized resonant frequencies vs.
the size of the circulation calculated from equation ( 3.38 ). The
dashed lines represent only the Doppler shift. Smal! circulations
would be obscured by the asymmetry shift A . For the n=1, m=3

mode, A =9.4x10™ . The frequency scale is offsel to emphasize the

splitiings.




Chapter 4 Rotational Drive Third Sound Resonator

This chapter discusses details of the rotational drive third sound
resonator and the principle of measuring small film flow velocities by this
technique. The response of the rotational drive third sound resonator is also

calculated and it show unique results.
4.1 Introduction

It was first thought by us that the technique of rotational drive third
sound resonator could be used to detect persistent currents in the helium
film. The disadvantages of the usual way to measure film flow velocities
which we will discuss in chapter 6, are obvious. For example, you have to
watch for the splitting changes in order to have full confidence that you
actually see a film flow instead of other mechanisms which lead to splittings
such as geometrical asymmetry splitting inside of the third sound resonator.
This is particularly difficult when there is no way to control the circulation
velocities.

The rotational drive , however, has lead to a great advantage in
detecting small film flow in the third sound resonator. It is simple to rule
out the geometrical asymmeitry splittings since it shows no difference when
the driving directions are switched. However, persistent current
measurements will show a difference as different directions were driven.
The actual rotational drive configuration is shown in Fig. 4.1.

Fig. 4.1 shows the picture of the top plate of the third sound resonator.
The whole surface was deposited with gold except for crossed lines which
isolated regions from each other by the shadows cast by 50 um wire masks

during the gold deposition. The four parts of the cell are drive plates 1 and 2,
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sinwt CosW I COSa! sinw!

(a) (b)

Fig. 41 The schematic drawing of the definition of the rotational
drive. (a) Right hand drive (RHD); (b) Left hand drive (LHD). P

is the pick - up area.

the pick-up area, and ground respectively. The right hand drive which we
used in this thesis is defined in such a way that if drive voltage at drive 2 is
cosax ,drive 1 is 90 degree phase difference in respect to drive 2 , hence
sinwt , as shown in Fig. 4.1 (a). The definition of left hand drive is opposite to
(a) shown in Fig. 4.1(b). It is obvious that you can get a stronger signal if the
drive direction is same as the direction of film flow. There are a total of four
different setting situations as stated before. In principle, the rotational drive
technique can distinguish all odd plus and minus modes. But due to the
geometrical symmetry of the even modes, it would not be able to detect the
differences for right hand drive and left hand drive conditions. This

prediction was also proved by the experimental results.
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4.2 Calculation of the General Responses of The Third Sound

Resonator

In this section we will calculate the actual responses of the third sound
resonator for an arbitrary drive configurations. To calculate the amplitude
for a particular mode for any drive configurations, we can start {rom the

equations of motion for the superfluid film [ 4.1 ]. Those are

dh Pe o -~

- =—h V-

ot oy Y (4.1)
av .

— =—fVh+

It I (42)

where g is the driving force which depends only on the transducer
geometry. We already known from chapter 3 that the eigenvalues of the

rotational states are :

a):wo[u«/y%zﬁ] (4.3)

The correction due to the circulation of the film and geomeilrical asymmetry
of the cell has been carried out by the perturbation method. From the chapter

3, the eigenfunctions can be written as

o) 5 b
\F oy 1-0sinf e 2 (4.4)
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where we have defined

Sjﬂ@:g and =yt + A (4.5)

and & is the total splitting. The factor ¢ has only two values +1 and -1
which represents plus and minus modes. These eigenfunctions are the actual
modes of the film inside the third sound cell. Since the calculations are
complicated if all modes are involved, we will restrict our calculations to a
two dimensional space, representing two of the usually degenerate modes for
a particular unperturbed frequency, which are + m and - m. By this way, we

can define
h:h0+n:h0+nam Jm(kr) Wc’m (46)

wheren alsohasan e '“" time dependence which we have dropped it for

simplicity. The wave function is

ﬁj_m¢

Von =agn e’ +a, e (4.7)

and
v=v +v, (4.8)

where v, has been set to zero now so that the proper eigenmodes have been

determined, and n is the oscillation part of the film, Ms, are the amplitude

of the state being considered in ( 4.5 ), which distinguish the different modes.

Both 7 and v ' are small since they represent the oscillation of the film.
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The time-derivative of equation (4.1) is

o’ __ £ 9 (§.5)
a t? *p dt (49)
The divergence of equation (4.2 ) is
?-Qizz—fvﬂa+ﬁ-§
Jt (4.10)
combining (4.9) and (4.10) yields
2 h—t —
ALY LTINS IO
o’ p p
P = -
— 2724 s .
=c2V’h phOVg (411)

In the next step, we are going to derive the driving force g . Based on the cell
geometry, the energy change per unit volume for a dielectric material

moving into an electric field is

2p (4.12)

where E is elecirical field which we apply to the resonator. Driving force per

unit mass therefore is
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(4.13)

Since the electric field can be written as a voltage applied to capacitor plates,

we can define it like

2

EX = 2VdDz G(r,gb)

{4.14)

where Vg is the voltage across the capacitor and d is the gap between the
capacitor plates. The factor "2 " in the denominator comes from the square

of the alternating drive voltage and DC terms have been dropped. The

function G ( rf ) is a unitless function which describes spacial distribution of

the electric field. The driving force per unit mass can be written as

L1 -
g=7 MEVG (415)
with
_ £—- & VD2
T=TE (4.16)

It should be noted that 7, represents the static thickness change associated

with a DC voltage of V.
Substituting (4.15) into (4.11) yields

a7

t2

i
=C2Vin-=7,0%2V3%
s VT et (4.17)
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where T have used

&2
atq =t
Vin=-x. 7

and

substituting (4.19 ) and (4.20 ) into (4.17) yields,

1
—w’n=-x2_c’ n—znocivze

(4.18)

(4.19)

(4.20)

(4.21)

The spacial function G can be written as a Fourier - Bessel series

6=2.6, J,(kr)e™?

nm

(4.22)

where k should be always k; , inside of Bessel function and so on. As we

said before, we only consider +m states in this calculation, so G can be

represented by

G=0,(kr)(G, " +6 o)
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with

G, = L' "eG(r’d))Jm (kr)e““‘ ?da
| e (ex)an . (424)
We can now write
Vies g, () (G et v o, e (4.25)

Substituting (4.25) into ( 4.21 ) leads to

(02, = @) Mo Wor =7 0, M(Ga ™t 40, ™) o0

where we canceled Yn (kr) in both sides of the equation (4.26 ) and used the

2 2,2
factof @, =Cik, .

Multiplying both sides of the equation (4.26 )by e and then

integrating over ¢ with the normalization condition

I pon

leads to
2 2 1 5 1 er2n i ¢ i g
(wnm - )no'm :anm nﬂz_n_ 0 wo‘m (Gm € + G—m = )d‘p

(4.28)

After dividing by @., in both sides of the equation (4.27), and using the

definition of normalization of V¥, , the resultis
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If we define

From ( 4.24 ) we obviously have, for components of D

IDriveG(r,gb) J, (kr)eﬂm *da
Di

1
T4 32 (kr)aa

cell M

Therefore

(4.29)

(4.30)

(4.31)

(4.32)

Substituting (4.32) into (4.6) gives the general response of the film inside

third sound cell for any mode chosen. For each particular mode it also

accounts for the shifted up and down modes of the lifted degeneracy into

modes denoted by & .

Equation (4.32) looks exactly like the equation for the amplitude of

motion of a mass on the spring except that there is no dissipation term in the

denominator, so we can add the dissipation term to each individual mode by

analogy with mass on the spring. The frequency dependence of a third sound

resonance mode is same as the mass on the spring. Therefore,
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w® o, (4.33)

Here I have changed @, to @, properly account for the perturbation

discussed in chapter 3 which is not included in equations of motion here.

If we go back to the very beginning to look at the equation ( 4.6 ), we

can write the height oscillation of the helium film as

1(z0) =1, I, (k) v, (434)

So the total capacitance change of a capacitive pickup can be written as

280(;’—&]
. £

= L e 02 (435)

Substituting (4.7 ) and (4.34 ) into (4.35) yields

250(1-3]
c.o=—~ %/ Lickup N4 Jm(kr)(amei‘”-l-a_me_i”)dl{'

o pp (4.36)

where C, is the capacitance change due to only a particular mode ¢. This

capacitance change gets converted to a frequency change £, in our

detecting system. This is
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I
f0 2 C’['otal (437 )

where fj is the frequency of the LC oscillator used to sense the capacitor

change.
Again we are concerned with only two states which are *m.

Combining ( 4.36 ) and ( 4.37 ) we have

fe = Non %(555)

(4.38)
Where the "pickup” overlap P can be defined as
L1 | ) aa(kr)emtan
P= o |."
—im ¢
[an |f a,(xr)e ™ *an (4.39)
also if we define
9t _ _hi,_&
Jdh d £, (4.40)

as the DC sensitivity of the LC detector to uniform film thickness changes.

Finally, according equation { 4.33 ), ( 4.38 ) can be rewritten as

c no(a;' 5)(50-§) df

2
o, Q0 (4.47)

Equation (4.41 ) is the general result for an arbitrary drive and pick-up
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configurations. Again’y, is the response to the DC voltage applied to the

. .

- x

cell. The term (aa' D) is the mode overlapping to the drive, and (aa' P) is
the overlapping to the pick - up. For a particular cell we now can calculate
these integrals. In the next section, we will apply this result to our cell and

actually calculate the drive response.
4.3. Calculations for the Rotational drive TSR.

As we discussed before, the rotational drive is made up of two separate
drive regions as shown in Fig. 4.1. In this section, we will calculate the
responses of the driving signal for both right hand drive and left hand drive
acting on either the o=1 or ¢=-1modes. This would be an application of

equation ( 4.41 ). There are actually four different cases, where g represents

plus and minus modes and vector D contains two different drive situations.

We can rewrite equation ( 4.41) as

g, =¥(a, ?)(3; D) (4.42)
with
Fe Mo df
_E)_z__ iw dh
0l Qo, (4.43)

In the next step, we will apply the rotational drive to our third sound cell,

and look at what are the results from equation ( 4.42 ).

The definition of 2, is
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3 = 1 Y1+ osinf elu{
y= ——
A2 -i—
oy 1l-0sin@ e ? (4.44)

and the vector D from equation (4.31 ) is

i fDriveG(r,q})Je_m‘;’dA

1
4 [ otan || o(xg)aeran (4.45)

Referring to the definition of rotational drive in Fig. 4.1 and we can

define G(r,qb) now. For the right hand drive, it is

1 —£<Q§<£ O<r<a
4 4
G(r,¢):< i %<¢<§ O<r<a
0 Elsewhere
(4.46)
and for the left hand drive, it defines like
i —£<qb<E O<zr<a
4 4

G(r,¢)=< 1 Z<¢<—Z— O<r<a

0 Elsewhere
(4.47)

The factors of i resultin sinw t time dependence when the assumed e~ ¢
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factor is considered. Both of these can be combined to

e —g<¢<E O<r<a
1£{1+q) T T
— 4 —_— —_
Gq(r,fp)—# e 4<gb<4 O<r<a
0 Elsewhere

(4.48)

where q = 1 denotes right hand drive, and q = - 1 denotes left hand drive. The

components of D. are then

(4.49)

Substituting equation ( 4.48 ) into the definition of D: for both right and left
drives, we have

--—-—-~—12 J: rJ, (k’r)dr eig(i_q) EZZ et ¢d¢ +ei§(1+q) J‘a:f et e

(4.50)
If we define ( same for either + and - )
1 1 a A
Do = ———— j rd, (kr)drj_; et " d¢
4], a0 % (451)

We can change variables in the last integral of (4.50) , and we can rewrite it
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in terms of Dy , this leads to

D, =Dy elg(lqu +e$ T; elg(lm)
(4.52)
which can be written as
D =D Zhog)l p4e)
q 0 = 1+i(q+m]
(4.53)

Next, we have to work on P , which doesn't depend on the rotation sense q .

According to the definition of P,

1 J.Pickup J. (kr)em¢dA

S S |
Lickup da Lickup Jm (kr)Eﬂm ? da (4.54 )

or defining
tim ¢
-I‘Pickup Je d ¢

-Lickup dA ( 4:55 )

P,=

we get

F=p,|!
{1} . (4.56)
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Obviously, (4.54) has nothing to do with the rotational drive. We can
substitute equations ( 4.44 ), (4.53 ) and (4.54 ) into (441 ). This gives, after

some complex manipulation,

foq =FD Ry eid{IQ){1+iqcos%+ o{qsinf? SinE;-+C039 [COS% +iqcos(¢+¥ﬁﬂ

(4.57)
This is the result for the right drive ( q =1 ) or left drive (q =- 1) for the
shifted up (o=1)or down (o= -1) mode. If we want to detect circulation,
the sin 8 term in equation ( 4.57 ) will be the most interesting term. This
only occurs in m odd terms.
For m=2k+1(k=0,1,2,3, ...... Yie m=1,3,5, . ... equation
( 4.57 ) becomes

foq :FDQPDe%(I—q){1+O‘(q(—1)ks:in8 +cosé (cos qbo—iq(""l)k Siﬂ‘f’o}ﬂ

(4.58)
A frequency independent " signal strength “ can be defined as
— fﬂ';q
% FD,P, ) (4.59)

Equation (4.59 ) contains four equations, they are denoted by ¢ and q.
The amplitudes of these signals can be found by multiplying their complex

conjugate on both sides of these equations. This gives
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| 5

0,41

2:(1+O‘C0$9 ct)SQﬁo)liIJfoﬂ(Hl)k Sin@} (4.60)

|SGF1’2=(1+0'cosQ coscf?o)[l—o(ml)ksinﬁ} (4.61)

Equations (4.60)and (4.61) give some information about the amplitude of
the modes. It is easy to see that from those two equations the amplitude of
RHD minus mode exactly equals the amplitude of LHD plus mode, and also
that the amplitude of RHD plus mode should equal the amplitude of LHD
minus mode, but the phases according to these equations are different. These
results have been confirmed by our experiment, and are presented in chapter
6.

Now, if we take the ratio of the difference to the sum of the amplitude

from equations (4.60) and (4.61), after some algebra, we finally get

(1) s R
A = GRZH}. (4.62)

|2

o,—1

Since this result holds for all odd modes, we can eliminate the all of the
subscripts to make it easier to see. R and L are the amplitudes due to RHD
and LHD respectively. The splitting due to the circulation in the resonator
¥ , has been isolated in ( 4.62 ).

From the definition of the total splitting,

8=y +A? (4.63)
it is easy to calculate the geometrical asymmetry splitting, which is
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2l
a= R? 417 (4.64)

For m even,ie. m=2k with kx=0,1,2,3,....... and doing the

same process as above, we eventually get

. =FD.2, ei:{{l—q)[l_'_iq(_l)k} (1+crcost9 cosqbo) (4.65)

According to the equation (4.65), there is no "q" dependence in the
amplitude of the signal. This result implies that the amplitudes of even
modes do not change with the rotational drives applied to a single mode. We
can explain this by the configuration of the modes. In order to couple the 90
degree phase relationship in time of the drive plates to the traveling wave,
they must line up spatially with a similar phase relationship. This requires
that if one drive is over a node, the other drive must be positioned over an
antinode. Since the drive plates are rotated 90 degree with respect to each
other, this can never happen for even m modes.

The equation (4.65 ), however, does havea " ¢ " dependence in
sensitive to the circulation. This " ¢ " dependence goes like cos® which
has less sensitivity when 6 is small while the " q " dependence in the odd
mode goes like sinf which has more sensitivity when @ is small. The

experimental results shown in chapter 6 give exactly what we predict here.
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Chapter 5 The Experimental Apparatus

This chapter discusses our experimental set up, including the
refrigeration system, the third sound resonator, the electronic detection
system and the way to acquire data and data analysis. Although this is a

standard technique, some improvements have been made in this systems.

5.1. The Refrigeration System

The refrigerator we used in our laboratory is a home made,
continuously operating refrigerator. The lowest temperature it can reach is
around 30 mK . This was measured by carbon resistors which were calibrated
with a 3He melting curve thermometer [ 5.1 ]. A schematic iltustration of
the low temperature parts of the refrigerator is shown in Fig. 5.1. Cooling is
achieved in a container called a mixing chamber. The process can be made
continuous by circulating 3He in the system by a pump at room temperature.
Incoming 3He gas is first pre-cooled and liquefied in the condenser 3 , which
is attached to the 4He pot, at about 14K . This temperature is reached by a
pumped 4He stage. The 3He then enters the still heat exchanger at about
0.7K through a capillary which is called a condenser impedance to prevent
gas from passing through and putting a heat load on the still. From there,
the 3He passes through a tubular heat exchanger and step exchangers where
it is further cooled by counter-flow liquid before entering the mixing
chamber. The mixing chamber was designed to be the place where the most
of the cooling process takes place. For temperatures lower than 0.8K,
mixtures of 3He and 4He separate into 3He - rich and 3He - dilute phases.
This was discovered by Walters and Fairbank [ 5.2 ]. This means that a more
powerful cooling process analogous to liquid evaporation is available at low

temperatures. As we illustrate the mixing chamber in Fig. 5.1, the upper
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Fig. 5.1. A schematic illustration of a dilution refrigerator built in author's
laboratory. 1. Helium -3 return line. 2. Still pump line. 3, 6. Return line
condenser. 4. Condenser impedance. 5. Film burner. 7. Vacuum can. 8. Still
shield. 9. Cell chamber. 10. Mixing chamber. 11. Step heat exchangers. 12.
Counter - flow exchanger. 13. Still heater. 14. Still chamber. 15. Helium - 4
pot. 16. Helium - 4 pot pump line. 17. Helium - 4 pot impedance. 18.

Helium - 4 intake.
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portion is 3He - rich phase which plays the part of the liquid. The lower
portion is 3He -dilute phase which plays the part of the vapor, and the
osmotic pressure of the solution plays the part of the vapor pressure { 5.3 |.
The driving process for dilution in the mixing chamber is caused by the
depletion of 3He from the dilute solution in equilibrium with the pure 3He
phase. The depletion actually occurs in the still where heat is applied to cause
vaporization. At this stage the vapor pressure of 3He is much higher than
that of He, and the gas given off is nearly pure 3He which returns to the
pump at room temperature. We also have put a film burner in the still
pump line to avoid 4He - film flow up the pump tube, since the superfluid
helium film can go anywhere. As the 3He is removed from the dilute
solution in the stll, 3He diffuses through the stationary 4He from the mixer
to the still. In the mean time, more 3He atoms pass through the phase
boundary to compensate the loss of 3He in the dilute phase, thereby cooling
the mixing chamber. As this complete cycle goes on, the temperature at the
mixing chamber will keep going down until it hits some limitation. The
experimental cell chamber (see Fig. 5.2) was attached to the mixing chamber
making very good thermal contact with it. The refrigerator was regulated by a
heater in the cell chamber and a regulator at room temperature. This
refrigerator has run off and on for almost six years and has achieved

continuous running for more than three months without any problems.

5.2 The Cell Chamber

The cell chamber is attached to the mixing chamber, the last stage of
the refrigerator. Fig. 5.2 shows a cross sectional view of the cell chamber. As
we pointed out before, most of the cell chamber was filled by 8.16 grams of
Alpha products (series number 00784 ) 1 Hm s Sum sliver flake. The powder

was pressed in volume of about 2.224 cm3 . A copper disk covered the
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Fig. 5.2 Cross section view of the cell chamber

container by just pressing it in. On the top of the copper piece, the third
sound cell was pressed against the bottom of the mixing chamber by a spring -
like holder and then slowly tightening with screws as shown in Fig. 5.2. The
top surface of the cell was coated by silver to provide good thermal contact
with the mixing chamber, thereby minimizing the temperature fluctuations.
The filling line, not shown in fig. 5.2, allows helium gas to be added to the

chamber.

5.3 The Third Sound Resonator.
Fig. 5.3 shows two views of our third sound cell. It consists of two

glass plates separated bya 8 um gap and glued together with stycast 1266

epoxy. The inner of cell was coated with gold film about 1000 angstrom thick
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Fig. 5.3  The schematic drawing of third sound resonator,
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using a vacuum evaporator. The initial resonator was made of glass coated
with silver [ 5.4 ] but we finally changed to gold because we found that
oxidation effected the cell's surface roughness when we had to leave the cell
in the air for the gluing process. The resonator is defined by a bubble in the
epoxy whose outer edge was fixed to be a 1.23 cm diameter circle by a small
circular etch pit approximately 10 um deepand 30 pm wide in the one of
the plates. Small holes (about 0.25 mm diam) through the center of the circle
in each plate allowed for a slight pressure to be applied during the gluing
process and for sample access later. The cell electrodes act like a cépacitor.
Making both the driver and receiver transducers are electrostatic. Both of the
electrodes were isolated from the surrounding gold by wires masks during
the gold evaporation. Since helium is a dielectric material, the helium film
inside the cell is pulled into a region of electric field, which is just the drive
region when an oscillating voltage is applied. Changes in film thickness in
the pick-up region will correspond to changes in capacitance. Thus the drive
and pick-up are direcily coupled to the mechanical degrees of freedom in the
third sound modes. We have two regions used as drive transducers, one as a
ground and one even smaller area which is used as a pick-up transducer. The
electrodes were configured to couple efficiently with the n=1, m=1 mode but
also to overlap considerably with many other modes. More details of these
modes configurations can be found in Appendix A . The outer surface of the
glass plates were deposited with silver film. This provided good thermal
contact while mounted of the chamber. A 0.13 mm inner- diameter
capillary provided sample access close to the hole of the cell. This played an
important role in trapping a persistent current during filling of helium at
low temperature. See Appendix B for the step by step process of making
third sound cell.

Third sound was first measured using an optical method [ 5.5]. In this

case, the third sound wave was excited in a horizontal film of helium I by
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pulses of infrared radiation. The variations in thickness were measured by
an ellipsometer. The disadvantage of this method is that the whole system is
very complicated. A few years later, the temperature oscillations were
measured by using superconducting bolometers [ 5.6 . In this way, a heater
was used as a generator of third sound waves and a thermometer as a
detector. The essence of this experiment is to measure the time of flight
between where the wave was generated and where it is detected. This
technique gives the third sound velocity only, it can not obtain the height
oscillations.

The height oscillations of a wave can be detected capacitively. This
work has been done by F. Ellis and co-workers [ 5.7 ]. In Fig. 5.4, a third
sound wave is propagated between two capacitor plates separated by a
distance. In the drive side, most people use a heater as a generator, but in this
work, we made a cell which had several perhaps crucial differences from the
other groups. In this cell, an alternating voltage up to 10 Vpp was applied to
the drive electrodes that produced a well defined force on the film at twice
the drive frequency. The response of the film can be monitored as a
modulation of the capacitance of the pick-up electrodes. This capacitance is
converted into an electrical signal by using it in an L-C tunnel diode
oscillator circuit phase locked to a reference synthesizer. The phase error is
the demodulated signal and is detected with a two phase lock-in amplifier
referenced to twice the drive frequency. As the drive frequency is varied, the
film responds as a series of resonances, each corresponding to different
modes. By recording those resonances, we can get all the information we

need to study the superfluid helium films.
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Fig. 54 The schematic drawing of capacitive detector.

5.4 The Tunnel Diode QOscillator ( TDO )

Oscillators have been used as transducers for making capacitive
measurements for a long time { 5.8 ] because the frequencies can be measured
with great accuracy. The most important advantages of TDO circuit are the
simplicity of the circuit and a remarkable stability, especiaily at low
temperature. In our system, an oscillator driven by a BD-7 tunnel diode was
used to measure the third sound signal.

Typical I-V curves are shown in Fig. 5.5. For a tunnel diode at
temperatures around 300, 77, and 4.2K. We can easily see that as the
temperature is lowered, the properties of the tunnel diode become
increasingly temperature independent. The negative slope region

corresponds to a negative resistance. The diode is biased
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Fig. 5.5 Current-voltage characteristic curves for the BD-7 diode. It
appears temperature dependent near room temperature, but
changes their properties by only a few parts per million per
kelvin below 4.2 K

with a DC current source located at room temperature to the inflection point
on the negative slope, so that it acts as a negative AC resistance and therefore,
cancels rf power dissipated in the LC circuit. A tunnel diode oscillator (TDQO)
circuit used in our laboratory is shown in Fig. 5.6 . The DC power is supplied
by a room temperature current source and which was connected to the circuit
through the same coaxial cable used to carry a small rf output signal from
TDO. The inductor L is chosen to give the desired operating frequency of the
LC circuit. X refers to the tapping fraction, the value of the tapping fraction X
is dictated by the impedance of the LC circuit at resonance, Zg . For the
desired condition of a critical oscillation, the impedance across the tap, X2 Zg

must be slightly greater than the effective negative resistance R, . Since
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Fig. 5.6 Schematic diagram of a tunnel diode oscillator circuit.

impedance Zy and R, depend on temperature, their values were not
accurately known, so it had to be estimated and tested in order to get a proper
working condition, R, was needed to eliminate any parasitic oscillations
formed by the lower portion of the inductor and the stray capacity of the
diode, Cp was chosen for a good AC ground and Rg provided the proper
DC bias for the tunnel diode.

In this work, the determination of all these parameters is dependant
on the capacitance of the third sound resonator. The oscillation frequency of
the LC circuit is about 76 MHz . This is corresponded to Zg =16 k Q. We
then chose the negative resistance of the tunnel diode R, =12k Q,Rg=10k
Q,Cp=200TF and X =7.1. The proper DC bias current was chosen to
maximize the output signal at the operating temperature. In our system, the
DC bias current through the tunnel diode is about 7 u A. The circuit

oscillated at a bias voltage around 70 m V {see Fig. 5.5 ). The total bias current
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should bethen 714 A +70mV / Rg = 17 p A. The resistance R, was
usually not included because the wire resistance played the role of R, which
eliminated the parasitic oscillation. We did see the parasitic oscillation when
we put the whole bias circuit down onto the mixing chamber. This was
caused by having a shorter wire, which decreased Ry, . The parasitic
oscillation disappeared when we added an extra length of wire into the

circuit.
5.5 The Phase Locked Loop. (PLL)

Accurate measurement of the signal frequency changes can be
performed using the phase-locking technique. The standard phase-locking
loop method uses a feedback loop to catch and follow the signal frequency.
The accuracy of this method is limited mainly by the instability of the local
oscillator, which is used as the reference signal. In order to minimize this
error, a modification of this phase-locking technique has been used.

A block diagram of a standard phase-locked loop ( also called the
demodulator ) is shown in Fig. 5.7 . The mixer is a nonlinear circuit element
that takes two input signals of frequency frpo and fyco and outputs a
signal which consists of both the sum and difference of those frequencies.
This signal then passes through a low pass filter which eliminates the sum
frequency signal and the output goes into a voltage controlled oscillator
(VCO) whose output frequency depends on the voltage input to it. If the
frequencies frpo and fyco are very close, it is possible for the Ioop to "lock"
to the fypo . This means that the frequency of the VCO matches and follows
the frequency of the TDO.

In principle, this demodulator can be used in any oscillator system to
convert the variations of the radio frequency to a proportional voltage

variations which can be easily recorded. We made a significant
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Fig. 5.7 Block diagram of the standard demodulator.

improvement to the PLL in order to satisfy our special requirements.

The PLL is pictured in Fig. 5.8. The difference between this loop and
standard PLL is that instead of sending feed back signal directly to a VCO, it is
sent back to the TDO which acts as the VCO. This gives us a fixed, and more
stable reference oscillator. Since the frequency of TDO is dependent on the
bias voltage ( see Fig. 5.9 ) and we put the feedback signal together with the
bias current in one cable line, it slightly changed the bias voltage, and hence
leads to a change in the frequency of TDO. The loop is in a "locked"
condition when the feedback signal cancels variations due to capacitance (

This is identical to the frequency variations according to Fig. 5.9 ).
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Fig. 5.8 Block diagram of a phase-lock loop (PLL) used in author's
laboratory.
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The frequency of TDO can be written as:

Jf df
= —— A +———V,
fTDO ﬁ)+acp P+ a Vtweek ’ (51 )

where fj is the natural oscillation frequency of TDO. The second term in
equation  (5.1) is the frequency deviation due to the capacitance change in
the TDO. This capacitor is the detector of our third sound resonator, the
third term is the effective VCO sensitivity.

If we assume :
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Fig. 5.9 Measurement of the bias voltage versus the frequency of

tunnel diode osciliator (TDO).
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Jmwo=lotAS (52)

we have

df df
Af=—-A V.
f aC C +avrweek ? (53)

we can always introduce a time-dependent part like this :

AfsAf-e™®! (5.4)

therefore,

- 2
Vi==2nV, [ Afdr=! gvﬂ

At (55)
where V; is amplitude of mixed signal. Obviously,

V=gV (5.6)
from Fig. 5.8 , g is just the gain factor between output Vo and V;. So,

af df 27V,
A AC . LA
f= aC, +8VW,C & @ 4 (5.7)

solving for Af, we have :

(58)
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And finally,

v 2C,

b df
- —2rnV
iow-2x¢ “gav

tweek

2wV, iJLACP

(5.9)

In the case of tight feedback, this corresponds to low frequency and high gain,

we have,

tweek ( 510 )

(5.11)

In the case of loose feedback, this corresponds to low gain at signal

frequency and high gain at DC. Therefore,

o df
2riV,——AC
ﬂflaac »

V=~ :

@ (5.12)

In either case, the output signal is directly related to the frequency changes
due to the pick-up capacitance change.
The oscillator used as a reference here was an HP 86568 0.1 - 999 MHz

signal generator. The mixer was also made by Hewlett-Packard with series




number HP 10534A.

5.6. The Detection System of Third Sound Signal.

Fig. 5.10 shows the detection system of third sound cell. The Hewlett
Packard (HP ) 3325A frequency generator produced a voltage signal at a
particular drive frequency that was run through an attenuator and a phase
shifter (if applicable) to the drive parts of the third sound cell. The drive
frequency was slowly swept by the frequency generator controlled by an I1P
86B personal computer until a third sound resonance was excited in the cell,
at twice the drive frequency. The TDO oscillator at pick-up side had a
responds with a modulated frequency. This signal was sent to a SR440 RF
amplifier, then to the mixer. The other input to the mixer come from the HP
86568 reference oscillator. The phase error signal was then split, entering
two pre-amplifiers, as shown in Fig. 5.10. The pre-amplifier # 1 played the
role of low pass filter and amplifier. Its output signal was sent back as
feedback to the TDO as described earlier. The pre-amplifier # 2 was adjusted
to allow only those frequencies in which we were interested in to be fed
through to a two phase lock-in amplifier referenced to the output of the drive
oscillator. The lock - in was set to monitor its input for a signal at twice the
drive frequency. The amplitude of the this signal to the lock-in amplifier
changed as the drive frequency was swept through a resonance. The output
of the lock-in amplifier was recorded by a computer.

Fig. 5.11 shows the first detection of a third sound signal. The double
resonance corresponds to a Doppler splitting of the third sound signal. Fig.
5.12 shows an actual resonance recorded by the computer. The marked
pointis are the actual data points and the two solid curves are the fitting
results which correspond to an in-phase and a quadrature signal. This data

can be fit to Lorentzians to determine the relevant parameters, like the
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quality factor QQ, the resonance frequency fp , the amplitude of the resonance

A, phase ¢ etc.
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Fig 5.10 . Block diagram of third sound resonator detection system.
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82




Chapter 6 Results and Discussion
This chapter discusses our experimental results and some conclusions.
We have measured superfluid circulations from three visible third sound
modes and also detected a change in direction of these circulations after a

warm up and cool down process. The mechanism of geomeiric asymmetry

shift of modes will also be discussed.
6.1 Results from Non - Rotational Drive Technique.

From chapter 3, the effect on a resonant frequency in the presence of

both circulation and geometric asymmetry splitting is

2 .
%mvok 2
o = (Do‘:li‘/(""‘““—wo ) + A m} (3.38)

It is important to note here that the geometrical splitting from ( 3.38) isa

fixed ratio with respect to the two resonant frequency whereas the Doppler

shift is a fixed difference. Because of this, equation ( 3.38 ) provides a clear

(ész 1

separation of the two effects via a plotof \ f ) vs. A ?, assuming v,
remains constant during gradual changes in film thickness ( This is indeed
true if you add the sample very slowly and would not change any film state ).
Hence the resonant frequency will change gradually, Also the trapping of
flow velocity during a thickness change of this manner has been verified in
other studies of persistent currents [ 6.1, 6.2 1 and in this thesis also. This
allows us to investigate the presence of a circulation without a controllable

method for changing the flow state. Such a plot is shown as Fig. 6.1.
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From this data, one can easy to find that the geometrical asyminetry

splitting which was about A — 9.4x 10™* , and the velocity at the perimeter

was 7, =349cm /5 based on the measurements of slope and intersection.
With this result, let us look at the data. Fig. 6.2 shows the n=1,

m =13 modes observed with a third sound velocity of about 24 m/s.

Shown are two different shifts of 14 % and 37 % calculated from equation (

3.5) with ¥3 = 1.09 for these modes. To a velocity at the perimeter v, of

4.86 cm/s in(a) and 12.25 em/s in (b). In this case, between the two scans

1.0 : T

(A5 Hz2

OO 1 1 1 L

2 105 yo2

Fig. 6.1 The observed frequency shifts plotted vs resonant frequency as
the film was thickened (frequency lowered) with a fixed flow
state. Squaring the frequency scales gives a straight line plot
expected from Eq. (3.38 ). For these data, the intercept gives a
perimeter flow speed around v, =349cm /s and the slope gives

the asymmetry shift A =94, 10-4. The size of the fit circles

represents the uncertainty of the data.




shown, the experiment was warmed up to 4 K, which is way above the
superfluid transition temperature, part of the sample was removed, then
cooled back down and the sample rapidly replaced. The resonator is located
in the flow path between the fill capillary and the reservoir so trapping of a
persistent current during this process is not surprising. Although the mere
presence of a persistent current is a matter of chance, since we have no
controllable way to produce it at this time ( Later in this chapter, you will see
that we do have some way to control this by controlling the cooling rate
during warming up and cooling down process.) ,history- dependent splitting

occurring at the same third sound velocity rules out purely geometrical

Fig. 6.2 Third sound resonances showing the circulation induced
splitting of the n=1, m=3 mode. The sound velocity in both
cases are 24 m/s yet the splitting is different reflecting different
flow states. The resonance will remain split even with no flow

because of geometrical asymmetry.
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asymmetries. Geometrical asymmetry splitting should not change in the
process warming up and cooling down. Further data confirms this in section
6.6. Based on the geometrical splitting we measured from Fig. 6.1 .
A=9.4x107",one can estimate from Fig. 6.2 that the splitting are 35 %
rotational in (a) and 74 % in (b). Clearly (a) was dominated by the
geometrical splitting since the flow speed is small and (b) was dominated by
the circulation splitting. This also accounts for the smaller splitting [ Fig. 6.2
(a) ] showing a more noticeable difference between the amplitudes of the split
pair. The standing wave modes overlap the transducer differently according
to the orientation of the asymmetry. This implies that (a) would have more
standing wave components and this is indeed true from the above analysis.
The rotating states couple to the transducer equally as shown in Fig. 6.2 (b).
We can now propose one possible explanation for the lack of splitting
in other resonator experiments. If there is no degeneracy at v, =0 (this
means a geometric splitting at v,= @ ), the circulation splitting is then
second order in v, and would be visible only at larger velocities. There are
two groups that claimed they did not observe mode splitting during their
experiment. One is at UCLA and the other at Rutgers University, [ 3.4, 6.2 ].
The cells they used have slight differences from ours and the detecting
techniques are different. If they had their expected splitting about some
order or even smaller than the geometrical splitting, there were definite
difficulties in seeing the circulation splitting. This is quite possible,
considering that this is still nine times smaller than the resonator in this
work. Now, question arises : If the asymmetry is dominating, where is the
other mode ? In other words, why could they not see the geometrical
splitting ? Considering the typical size of the shift ( 3.24 ), it is somewhat
surprising that geometrical splitting of a circular resonator has not been
previously reported. We believe the transducers themselves may be the

cause of the geometrical asymmetry. They could force the modes into the

86




standing wave configurations, by either directly perturbing the uniformity of
the substrate by their mere presence or indirectly through heating, as would
be the case with thermal drives and pickups. If so, the modes would
naturally split into one strongly coupled to the transducers and the other
weakly coupled and hence not visible. This would be even more likely in a
resonator where the transducers drastically differ from the surrounding
surface.

One other explanation may be related to the topology of the resonator
surface. In a resonator with one hole or no hole at all, the behavior of the
velocity field near the 1/r singularity will undoubtedly disperse the flow
field, since singly quantized vortices are the preferred state. Uncertainties in
this regard are avoided in a multiply connected resonator such as this one

used, where the singularity is avoided completely.

6.2 Results for Rotational Drive Technique.

The setting up of the rotational drive technique has been given in
chapter 4. Now, we can record a resonance by scanning through it with
drive on. Since the relay in the phase shifter box can reverse the two drives
from one to another between scans, we can actually record four resonances in
one group, that is, right hand drive for both plus and minus modes and left
hand drive for both modes. The phase shift is not readjusted between scans
because the phase change here is negligible. The behavior of the data were
exactly matched our predictions. Fig. 6.3 shows an actual data file which was
scanned through a resonance in four different situations by a two phase lock-
in amplifier. From Fig. 6.3, if you compare two different drives acting on the
same mode, obviously the left hand drive plus mode signal is bigger than the
right hand drive plus mode signal (see (a) and (b) in Fig. 5.3). But for the

minus mode this is exactly opposite (see (c) and (d) ). This can be explained by
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thinking that the left hand drive accelerates the plus mode, i.e. they are in the
same direction and therefore decelerate the minus mode, so the left hand
drive minus mode signal should be smaller. These results are also consistent
with the calculations made in chapter 4. It is easy to see from equations
(4.60) and (4.61) , that the amplitude of RHD minus mode is exactly
equal to the amplitude of LHD plus mode, and also the amplitude of RHD
plus mode is equal to the amplitude of LHD minus mode, but with
different phases. Typical data is shown in Fig. 6.3 where (b), (c) corresponds
with the first case as the analysis above and (a) ,(d) for the second case. They
exactly match the predictions we made.

This behavior was also seen for higher order third sound modes, such
as n=1, m=3, 5 modes. This will be discussed later.

Now, we are going to describe these four resonants ( They correspond
to the plus and minus modes with right and left hand drive ) and some
interesting results from our calculations. The whole process can be explained
as follows: The third sound resonant was recorded by a HP computer and
fitted later by a fitting program in our mainframe computer ( see Appendix E
for details of the program ). After we were convinced that the fitting curves
match up to the actual data points ( see, for example, Fig. 5.13 ), we then used
equations ( 4.62 ) and ( 4.64 ) to calculate the actual splitting due to the
circulation and geometrical asymmetry. As you may have noticed before, the

total splitting is defined by
87 =y2+ A2 (4.63)

It also can be determined by the splitting of the two frequencies. The
definition for the total splitting § is:
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Fig. 6.3 The actual data file which was recorded by scan through the
resonant at four different situations. The two curves in each
resonant represent the in - phase and quadrature signal from
the output of the lock - in ampilifier. (a) RHD plus mode. (b)
LHD plus mode. () RHD minus mode. (d) LHD minus mode.
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+f (6.1)

where £, and f_ represent the frequencies of o=1and o= -1 mode
respectively.

Using equations ( 4.62 ) ,(4.64) and (6.1), the mode shift due to the
circulation and the geometric asymmetry splittings are calculated. Note, that
in these calculations only part of the information from the recorded
resonance is used, i.e. the amplitude of each resonance associated with the
different drive situations. It is easy to calculate the circulation and the
amplitude of geometric asymmetry shift, but there is no way of finding out
the phase shift of geomeitric splitting, @, . Only part of the theoretical
calculation ( 4.62 ) can be tested using the experimental data. To convince
ourselves that the results from equations ( 4.62 ) and ( 4.64 ) are reasonable,
we did another analysis which started from equation( 4.58 ). Obviously, ( 4.58
)} represents four equations. They correspond to the right and left drive, plus
and minus modes respectively. There are three unknowns that we have to

solve. They are A, the amplitude of the signal; @ , defined as

4 _A
51n9»~6 and cosﬁ—a

which represent circulation and geometric shift of the modes. ¢, is the
geometric perturbation orientation. To solve these four equations with three
unknowns is not easy. What we did the analysis is the following processes.

First, we recorded four frequency scans. After we fitted them with
proper fitting parameters, we got the amplitude and phase for each resonance.
They actually represent four points in the complex plane. To determine
how well these points describe the resonances that occurred inside the

resonator, consider the following question: Are the phases we measured the

91




actual phases of the resonances inside of the resonator ? The answer is no. In
fact, the detection system introduces a phase shift. Therefore, the calibration
of a phase lock loop (PLL) has been set up to measure both this phase shift
and the amplitude gain each time we take data. This is discussed in
Appendix E . Furthermore, since our resonant frequency is double the drive
frequency (This is because the drive force is double the drive frequency), the
lock-in amplifier used to measure the amplitude and phase of the resonance
has to be set at 2f mode. The lock-in amplifier used to calibrate the PLL
signal was set at f mode using an artificial signal to replace the real signal
from the cryostat during the calibration. The lock-in reading between 2f
mode and f mode has been found to have a 90 degree phase difference.

Take this into account, the real signal at resonance is :

Measured signal if
e
PLL calibration

Realresonance=
Remember that the PLL calibration signal is a complex calibration

measurement, The real phase of the resonance inside the resonator will be:
Real Phase = Fitting Phase - Arctg -1 (PLLY/PLLX) + 3.1415926 /2

where PLLX (Y) is the X (Y) component of the lock-in reading. The fitting
phase comes from the fitting results. The program used to do the fittings can
be found in Appendix E.

Up to now, we have the "right" four data points in the complex plane.

We also have four theoretical points from equation ( 4.58 ). By choosing the

parameters (4,6, ¢) properly, we can let these four theoretical points get as
close as possible to the four data points in the complex plane, respectively. A

computer program which minimizes the mean square distance between
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Fig. 6.4 A comparison of actual data points ( open circle ) with

theoretical fitted points { dark square ) .

corresponding points and then finds out the three parameters has been used
in this analysis. Fig. 6.4. gives an example. The four open points are the
actual data points, the four dark points are the theoretical ones calculated by
the computer. Although they are not perfectly matched up, it is the best fit
given by the computer. Once we have 6 , it is not difficult to find y and A
according to the definition of # . The measured and theoretically calculated
amplitudes are consistent in ( 3,1 ) and (5,1 } modes, but there is some
deviation in ( 1,1 ) mode. The inconsistence in the ( 1,1 ) mode is within our
experimental error limits since ( 1,1 ) mode has the greatest geometric

asymmetry shift. This results in less sensitivity in detection of circulations
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in the resonator.
Whenever possible both measured and theoretically calculated values

are presented together.
6.2.1. Same v for slow increase of film thickness.

Fig. 6.5 shows that a change in film thickness ( hence third sound
velocity ) has almost no effect on the circulation speed for the ( 1,1 ) mode.
Fig. 6.6 and Fig. 6.7 show basically the same things forthe (3,1) and (51)
mode respectively. Each point in the figures represents an average calculated
from data taken by scanning through resonance with different driving

voltages. All modes show that if we slowly increase the film thickness, the

010
005
I=
R
3
= 0
5
T
=3
5
s
-005
% i ¢ :
-010 L—
8.0 95 10 125 . MO0 155

Thrd Sound Velocity {m/s}

Fig. 6.5 A measurement of circulation with slowly changing of the
film thickness for ( 1,1 ) mode. The square and circle points

correspond to plus and minus mode respectively.
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Fig. 6.6 A measurement of circulation vs changes of film thickness for
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Fig. 6.7 A measurement of circulation vs changes of film thickness for

(5,1) mode.
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circulation does not change. But if we increase the film thickness rapidly, the
circulation will change. Fig. 6.6 and Fig. 6.7 show that the circulation speed
has a big jump at a third sound velocity of 7 m/s. This is because we added a
large amount of helium gas into the resonator under high pressure,
producing a circulation change. This is consistent with the analysis of
trapping persistent currents in the cell. Circulations in a cell are usually
generated by rofating a cryostat while cooling through the A point of
helium. Since we do not have such a device, the only way to get a circulation
is to trap it by some kind of turbulence. How close the filling line is to the
center hole of the cell seems to play a important role in this method.
Experiments using the same cell as before, but with the filling line far away
from the center hole, never showed a circulation. But after we made this
change, we could easily see the circulation and we could even change it by
different filling rates or different cooling rates through the critical
temperature. The mechanism of this dramatic change is obvious, that more
turbulence is brought into the cell which, therefore, introduced a circulation.
Similarly, it is not surprising that the circulation does not change when
helium is slowly added to the cell.

The results of this experiment provided us with an explanation of the
contribution of the geometrical asymmetry splitting. The geometrical
splitting changed in a random way during the process of increasing film
thickness. This indicates that the cell's asymmetry is not the only cause of
geometrical splitting. Dust sitting on the surface of the cell may also be an
important factor in geometrical splitting. As the film thickness increases, the
importance of capillarity on different dust sits will change. This will make a
thickness dependent change in geometrical splitting. Another possible
explanation is because the circulation in our cell may not be completely
concentrated in the center. A non uniform distribution of pinned vortices

may also cause a geometrical shift. Fig. 6.8' shows a geometric asymmetry
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splitting versus third sound velocity. It clearly shows that the geometric

asymmetry splittings are changing with film thickness.
6.2.2 Same 7y for higher order third sound modes.

In the prior section, we showed the circulation speed. versus third
sound velocity for all three modes. if the results are examined carefully, it
seems that the circulations are independent of third sound modes, since the
results are all the same at certain film thicknesses. If the circulation is

plotted versus all modes, you should get a straight line, according to our

Data from fitting
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Fig.6.8 A measurement of geometrical asymmetry splitting versus

changing of film thickness.
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definition in Chapter 3 , which is

V=T (3.20)
but
® 4rnf a
C‘3 = e = e
k X (6.2)
S0
y= L= v) X
4nf, a (6.3)

Obviously, if you plot ¥ versus X,, ,the slope will give the circulation

speed V(a) and the line will go across origin. The data shows that the lines
are not exactly pass through the origin for either the calculation of amplitude
or the fitting parameters. This reminds us that some solid body rotation may
be involved in this case. The solid body rotation can be thought as uniformly
distributed vortices rotating around center of the cell. The total circulation
which was measured has two components, one is from circulation
concentration at the origin, which means that most of the vortices are
distributed in the center, and the other is solid body rotation. Therefore, if we
model the total circulation with the two components described above, the

total frequency shift due to the circulation is

do__ va) oo,
e Y=Y c, Tum (6.4)

where @, is the solid body rotation frequency. Here ¥, is a constant which

can be thought as the weighing of frequency shift due to solid body rotation
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within each mode. The constant 7. can be calculated from assuming that the

flow field of the solid body rotation is
v(r)= W, r (6.43)

The calculation of 7. is given in Appendix D. Here we only show the result,

which is

2
Wl l-m— =
Kow — M0 (6.4b)
Rewriting equation ( 6.4 ) to a convenient form,

A a) YI]ITI Xnm
= o, + o,
Y 7 (6.5)

v (@)

where 5 % isthe frequency shift at the perimeter due to the center
contribution of vortices. Therefore, the total number of vortices at center

contribution can be written as

Be =75 & (6.6)

Next, let us find out how many vortices there are in uniform distribution.

According to the definition:

§V*(r )-dl_’ = IE
m, (6.7)
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It is easy to get

! r m,a {(6.8)

Here n,, is the total number of vortices in the uniform distribution. From (

6.8 ) we have

n, =242 g
4 h u (6.9)
Aw Vom Ko
Once we plot ¥, versus 14 according to equation (6.5), we can

easily determine @, and w, from the slope and intercept.

Fig. 6.9 and Fig. 6.10 are plots from amplitude calculation and fitting
parameters respectively. Both results show that most vortices are
concentrated in the center of the cell. The plot from the amplitude
calculation shows fewer vortices in the uniform distribution, while the plot
from the fitting parameters shows that about one half of the vortices are in
the uniform distribution. We tend to believe the data from the fitting
parameters because more information from the actual data is used, not only

the amplitude but also the phase and all four resonances.

6.2.3 Some y for both plus and minus modes.

Fig.6.5, Fig. 6.6 and Fig. 6.7 in section 6.2.1 show measurements of
circulation speeds at different film thickness for ( 1,1 ), (3,1) and (5,1)
modes respectively. They also show that the circulation is the same for both

plus and minus modes. Even when the total circulation made a big jump in
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Fig. 6.9 A plot of equation { 6.5 ) from the amplitude calculation and
intercept . The negative intercept here means that the direction
of solid body rotation is opposite the direction of the circulation.

We can estimate the distribution of vortices.
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Fig. 6.10 A plot of equation (6.5 ) from the fitting parameters.
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Fig. 6.1T A plot of theoretical fit results of circulation vs film thickness

for (3, 1) mode.
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Fig. 6.12 A plot of theoretical fit results of circulation vs film

thickness for (5, 1 } mode.

102




Fig 6.6 and Fig. 6.7, measurements of circulation from plus and minus
modes were still the same. The plus and minus sign in the figures only
indicate the directions of the circulation relative to the drive, this is predicted
in equation ( 4.62 ) of chapter 4. Fig. 6.11 and Fig. 6.12 are from the
magnitude fitting results, as we discussed in the beginning of section 6.2 .
There is only one curve in Fig. 6.11 and fig. 6.12 because we had already
averaged the plus and minus modes when we analyzed the data. Comparing
the two groups of figures, the results are consistent with the rotational drive

technique.

6.2.4 No Amplitude Difference in (2,1 ) Mode.

In chapter 4, we calculated the amplitude for all the modes and
concluded that the amplitude of ( 2,1 ) mode is the same for either right or left
drive. Fig. 6.13 shows experimental results of ( 2,1 } plus and minus modes
with two different drive situations. The upper branch is for plus mode with
right and left drive and the lower branch is for minus mode. The amplitude -
which we measured for both driven situations had almost no difference.
Although we made only three measurements at different third sound
velocities, it clearly showed that the result of the calculations in chapter 4 are

correct.
6.3 The Change of Circulations.

After the successful observation of circulations, we started to think
about some ways to control the size of the circulation. As we pointed out
before, our experimental device is not a rotating cryostat which is usually
used to generate circulation. So generating or controlling a circulation was

more difficult for us. Following the basic idea of generating these
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Fig. 6.13 A measurement of amplitude of ( 2,1 ) mode with rotational

drive technique. They show no differences in amplitude with

right and left drives.

circulations, i.e. the amount of the circulation must be proportional to how
much turbulence there is before you cool below the superfluid transition
temperature. In another words, it is proportional to how many vortices are
generated and enter into the cell. Based on this principle, we tried three
methods to generate and control the circulation. Two of them worked pretty

well, as we expected.

6.3.1 Changing Filling Rates.
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This is a direct confirmation that the trapped circulation is
proportional to the external turbulence. Remember the filling line is
positioned just outside of the center hole of the cell, Different filling rates
will give different turbulence. It usually gives a big circulation in the
resonator when we fill the sample with a big filling pressure. We have also
compared the experimental results with the filling line away from the center
hole. This clearly makes a big difference in the resulting circulation speed.
Although we have not measured the details of the relationship between the
filling pressure and circulation speed, qualitatively speaking, they are

proportional to each other.
6.3.2 Changing Cooling Rates.

This is the way to change circulation without changing film thickness.
The procedure we followed was to warm up the cell above the superfluid
transition temperature, then, cool it back down at different cooling rates. The
mechanism of circulation changes can be described in the following manner:
As the temperature warms to above the superfluid transition temperature,
the primary circulation in the cell is eliminated due to the viscosity of
normal fluid, Excitations in the film will be generated and more turbulence
will be created, since the equilibrium between the film inside the cell and the
outside of the helium reservoir is destroyed. This process can also be
understood by the creation of more vortices in the cell which generate a
rotational field inside the cell. As the cell is cooled, the vortices will look for
reunion with their antipairs. How many pairs of vortices will get reunited is
dependent on how fast the whole system is cooled through the transition
temperature. Once it goes through this temperature, the circulation will stay
at a constant rate, since the fluid now is superfluid. Based on this analysis,

measurements of circulations before we warmed up and after we cooled back
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down, along with their cooling rates were faken.

Fig. 6.14 and Fig. 6.15 show the total mode splitting versus the cooling
rate at the third sound velocities 10.45 m/s and 12.62 m/s respectively. Each
point in these figures corresponds to one warm up and cool down process.
Although Fig. 6.14 and Fig. 6.15 correspond to different third sound
velocities and hence different film thickness, they all show that the total
mode shift tends to increase for larger cooling rates. The total splitﬁng is the
combination of geometric shift and circulation shift. The geometric shift
should not change during the warm up and cool down process since the film
thickness remains the same. only thing that could changes is the circulation
state. TFig 6.16 shows a measurement of geometric splitting versus cooling
rate. Although this is somewhat noise, it does show that the geometric
asymmetry shift changes only with film thickness changes, no matter how
fast the cooling rate is. In comparison with these results, Fig. 6.17 shows the
circulation changes with the cooling rate. In conclusion, we have found a
way to change our circulation state by controlling the cooling rate. A rough
relationship between circulation and cooling rate has been set up and plotted
out for further reference.

Another feature observed was a change in the direction of the direction
change of the circulation. Fig. 6.18 shows a split mode which changed its
direction of circulation after the warm up and cool down procedure. The
amplitude of the mode switched over indicating a direction change. From
the calculation this represents a sign change between the plus mode and

minus mode.
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Fig. 6.14 A measurement of total splitting vs cooling rate at the third
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Fig. 6.15 A measurement of total splitting vs cooling rate at the third

sound velocity 12.62 m/s .
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Fig. 6.18 Shows that the direction of circulation changes after a warm

up and cool down procedure.

6.3.3 Circulation not Changed by Vary of Drive Voltage.

The third method tried to change the circulation state through a large
drive voltage or an external disturbance. We drove the third sound
resonance with a much larger drive voltage than usual. No changes in
circulation state were observed. This may imply that the drive voltage is still
not high enough ( we only gave 10 V peak to peak ). We did not want to
short out our resonator, so we did not pump enough energy into the cell to
change the state of circulation. But in any case, there should be a way to
change the circulations inside a cell if the amplitude can be made high
enough. Also, no changes were observed after banging on the cryostat.
However, which some other group did see a change in circulation in bulk

helium after hitting their cryostat.
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6.4 Quantization

In the beginning of this chapter, we have talked about other groups
that had observed single quanta in bulk liquid helium, but no one has
observed them in the helium films. We tried to reach this goal in this work
but unfortunately we were not successful. The lowest circulation velocity we
have seen so far is beyond 105 m/s. This corresponds to the quanta number
around 61. The reasons we could not see a single quanta at this fime are :

1). We must get rid of geometric asymmetry shift or at least decrease it
by about a factor of 10 in order to detect single quanta, since the total mode
splitting is dominated by geometric splitting at small circulation speed. To
reach this goal, one way is to try to " tune " away the geometric asymmetry
splitting. This is possible, some work has been done in this laboratory. For
details of work, see reference [ 6.3 ]. The other way is to get lucky, since the
different resonators can have different geometric asymmetry splittings.

2). We can make a smaller cell. This is a difficult thing to do, from the
calculation, the number of quanta is proportional to the size of the cell and
the velocity of the film flow. Therefore, decreasing the diameter of the cell
will definitely help this.

3). We must increase the sensitivity of the experimental system in
order to detect such small circulation. The rotational drive technique may
not work in this case because resonances overlap too much so the difference
between two split modes can not be detected.

One other technique we can use to detect a small circulation is the
measurement of mode decay after we drive up the resonance. Since we drive
two split modes at the same time, when we remove drive, both modes will
decay simultaneously, but the decay frequencies will jump over two modes.

Fig. 6.19 shows two decays at different time scales. From the beat of the decay,
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we can easily measure the frequency difference for both modes, and
therefore, we can measure the total mode splitting. Then we need to
measure the amplitude of the resonance for one bigger mode ( either plus or
minus mode ). From that we can find out the circulations. According to this,
if a geometric asymmetry splitting was 10 times smaller than what we have
now, we could see the single quanta. The way to identify a single quanta is to
detect at least one beat during the third sound decay. The decay time for the

third sound is

Thecay - 28, (6.10)
© .

while the characteristic time for one beat is 7

A

Beit Ao (6.11)

The observation condition is'

Toear = Toecay (6.12)
this will require

i C
°%2 V(;) (6.13)

So suppose we can have circulation speeds up to 5 x 10°%, which is less
than 10 times smaller than the geometric asymmetry splitting at the third
sound velocity around 10 m/s, then the Q's we need are about one

million. However, we have already had such value of Q's at the third sound
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velocity 10.4 m/s , but the geometric asymmetry splitting isat 107" scale.

Therefore, we do need to eliminate the geometric asymmetry splitting.
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Fig. 6.19 Shows two decays of the third sound resonance. The beat is

due to the overlapping of two split mode. The total splitting can

be determinated from the beat frequency.
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SUMMARY

In summary, we have developed the rotational drive technique in
both theory and experiment. The data has shown that the calculations are
consistent with the experimental results. We also have made for the first
time, measurements of circulation in a third sound resonator. The
observation of circulation changes during the procedure of warm up and cool
down provided a rough method to control the circulations inside third
sound cell. The investigation of geometric asymmetry splitting in the third
sound cell is very helpful for the further study of the helium film in the
resonator. If the geometric asymmetry splitting can be removed, observation

of single quanta in the two dimensional film becomes possible.
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Appendix A

Modes Configuration of Third Sound Resonator

Third sound is a surface wave, it must obey some wave equations. To
figure out how its modes are configured, our first task is to derive the wave

equations which satisfies the third sound velocity. Recall equations in

chapter 2,
dh Vg
par tipldg =0 (2.16)
S 9h ., C AT _,
40t T dr (2.20)
OV dh aT
ar —~F xS o= (2.23)

Taking derivative on both sides of (2.23) respected to x,

9, 3%h 9T
dwx -t atS o2 (A-1)

the time derivative of equation ( 2.16 ) is

9 2h 0.
pat2+(ps}d;x;§r ""0 (A—2)

Combined equations { A-1) and (A-2) yield,
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dr? P d x dx’ (A-3)
It is easy to rewrite equation ( 2.20 ) like:
S dr_ C T
d dx T T Jx (A-4)

Taking a derivative respected to x on both sides of equation ( A-4 )

S 3h __C a7
d gx? T 9x° (A5)
Substituted ( A-5 ) into ( A-3) one has
*n (ps)[ TSz]ézh
EPE I UG e (A6)
Rewrite this ,
d’h 1 d°h _
ax* (p) PO
P [ff” C ] (A7)
For three dimensional case, one can change ( A-7 ) to:
2
vi-Ld l
[ Cy af] (A-8)

The solution of equation (A-8) can be found in any mathematical physics

books,
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_ tm ¢
h(r, )-%hmfm(kr)e (A9)
we can add the time dependent part as

_ imé  ~iom:
h(r . )—Z_,hmlm(kr)e e (A-10)

where J,(kr) isthe mth Bessel function of the first kind. m=0,
12243, the azimuthal quantum number. One important point we
have to make explicit here is that the solution ( A-10 ) has assumed that the
wave functions are finite at the origin, this implies that Bessel functions of

the second kind, Y, (x ) are not allowed. This is not precisely the case since
we have a hole in the center of the cell, but since it is small, so ¥, can be
neglected. The presence of the hole also eliminates any J, modes.

The boundary conditions that link the solutions of the top plate to the
bottom plate are (see figure A1)[A.1]

Noocion (I‘,¢) = Ny (rf¢)

r=a

r=a {A-11)

d d ,
77 Proon(T0| == 370, (00| (A10)

Equation { A-11) requires that the surface be continuous across the corner in
the third sound resonator. Equation ( A-12) requires a smooth surface across
the corner. So the plates must have some angular dependence in order to
satisfy the continuous and smooth requirements of equations ( A-11) and

( A-12) . The boundary conditions lead to two possible type of modes : node
modes and antinode modes.

In node modes the amplitude is zero at the edge of the cavity. Equation
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Helium filn

Fig. A-1. Basic geometry of a pancake shaped cell used to calculate

mode configuration of a TSR.
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( A-12 ) requires the top plate to be 180 degrees out of phase with the bottom
plate. These modes have resonant frequencies given by the zero crossings of
the Bessel function.

CiW_ o

P = ( A-13)

where m is the angular number, Wy, , is the nth zero of the mth Bessel

function Ja (X) .
In antinode modes the amplitude of the wave is a local maximum at

the edge of the cell. The resonant frequencies of these modes are

C. X

3 rm

@,y = a ( A-14 )

77272227 T — el pate

/\-/'\
/\/\‘\

L

™ Film Surface

Fig. A - 2. The node mode. It has a 180 degrees phase difference between top

and bottom plates. This is not a detectable mode.
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where X, is the nth zero of the derivative of the mth Bessel function (i.e.

J ;(X am) =0 ). In those modes the top and bottom surfaces resonant in phase
with one another.

The capacitive detector can not detect the node modes because of the
180 degrees phase difference between each plate. (see Fig. A-2 for details of the
film surface). The antinode modes, however, are in phase on the top and
bottom plates; the surface of the film illustrated in Fig. A-3.

The third sound resonator is designed to detect the first few antinode
modes. A listing of the first few resonator modes are shown in table A-1.
The cell that we were used in the experiment has a very good sensitivity and

has already detected n=1, m=1,2,3,5,6,7,9, 10, 11 and n=2, m=1 modes so far.

S ke Cell Plate

A Fitm Surface

Fig. A - 3. The antinode mode. The films on the top and bottom plates are in

phase. This is a detectable mode.
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RELATIVE NODE
MODE Xnm COMMENTS
(m,n) AMPLITUDE LINES
First mode
(1,1) 1.84118 2.02E+01 + Detectable.
. Detectable, but
2,1) 3.05424 1.32E+01 rotational drive has
- + no effect.
Detectable, but it start
3,1 4.20119 5.32E+00 to reduce capacitor's
sensitivity.
o\ i The opposite polarities
(4,1) 5.31755 0 %% reduce a lot the
+]- capacitor's sensitivity
Same reason as above, ]
(1,2) 5.33144 2.39E+00 -1, butstill detectable.

6

Table A -1 Modes of third sound resonator.
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Appendix B
Making a Third Sound Resonator

Building a third sound resonator is the crucial part of this experiment.
Basically, we want the gap between two capacitor plates to be as small as
possible and still be able to have a 10 V peak to peak drive voltage that does
not short out. The surface of the cell has to be as smooth as possible either on
the primary glass surface or after evaporation. The hole in the center of the
resonator should be small but this is limited by the technique we used. The
time that the cell sets in the air should be as short as possible in order to
decrease oxidation. Following is the step by step process of making a third

sound cell.
B1. Choosing Material.

The glass used was micro slides, T mm thick. Cutting it into two sizes,
one 16x16 mm and other 51,21 mm . After cutting, you have to look at it
carefully under the microscope. No cracks, scratches and defects were allowed
on the surface. As these will definitely increase the dissipation in the film.

Try to get a "perfect glass piece”.
B2. Drilling a Hole.
The hole was drilled mechanically. The tricky part of this technique is

to make a drill. We used two sizes Cy; N; tubes, one outside dimension

exactly fit into the other inside dimension. Soldering the joint allowed for
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tnch 0.005 inch

Motor Axle

Fig. B - 1. Schematic drawing of a home made driller used to drill

small hole on the third sound cell.

easy changing of the "bit". The small end was our drill and other end
soldered to a holder. Figure B - 1 illustrate this device. The small tube is
used to grind through the glass with the help of a fine abrasive and water.

B3. Etching Circle on the Small Piece.

1). Clean up the glass surface, using an Alconox detergent wash first,
then a distilled water rinse. Then, dropping into 50 % NH4 OH for a few
second, and rinse again. Finally, rinse in methanol as a final cleaning step.

2). Set glass flat on a surface spinning at about 3600 RPM. Wipe the
surface again using methanol to make sure nothing was setting on the
surface.

3). With the spinner off, apply several drop of shipley $1400-31 photo
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resist and then start to spin about 5 to 10 seconds. This will guarantee that
the covered film was uniform and the right thickness.

4). Bake in an oven for 20 to 30 minutes at temperature about 95 to
105 Centigrade so that the photo resist will get harder.

5). Expose 15 minutes at about 20 cm away from the Hg-Arc lamp
with a circular masked film on. We only allowed a circular ring to get
exposed.

6). Developin 5% N,OH for 20 to 30 second. This removes the
photoresist in the exposed region.

7). Rinse in distilled water and blow dry with air. Look again under the
microscope to make sure the photo resist was removed completely from the
exposed area.

8). Etch 10 to 15 second in pure hydrofluoric acid, again rinsing
immediately. in water. This etches the glass forming the etch pit.

9). Check under microscope to make sure the etched circle is good, no
bridge crossing over. This is very important in preventing the glue from

crossing during the gluing process.
B4. Evaporating Process.

1). Cut a bevel in one side of the etched piece. Then polished the
beveled surface by sand paper. The reason for this is that we want to deposit
gold on the bevel surface in order to make a solder joint between two plates.

2). Clean up the surface again by methanol in order to make good
deposition.

3). Mask both pieces with thin wires formed in the correct shape of the

electrodes.
4). Evaporate with a thickness monitor. In this work, getting 1000

angstrom thick film corresponded to 4 KIiz change of the crystal oscillator
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monitor.

B5. Gluing Process.

1). Place the two plates together face by face and put four 10 um plastic
stripes on each side. Line up the center hole by sending light through from
the bottom. Then carefully put a weight about 44 grams on the top to
minimize the gap. Check to see there is no short between the plates after it
has set. This time glue only four points at the corners with stylast 2850 GT
epoxy.

2). Check again to see there is no short between the plates again when it
dry. Measure capacitance, calculate the gap to check that the gap is uniform or
nof.

3). The second application of glue is a very important process. We
have to watch it under microscope while the glue is sucked in around all
edges through capillarity. The inside of the cell is pressurized about 800 torr
through the hole in order to stop glue from winking across the etched circle.
By adjusting pressure that we apply, one can control the glue and let it stop at
the etched circle.

4). After the glue is completely dry, check the capacitance again to make

sure that the glue was not sucked into the cell.

Bé6. Treatment About the Outside of the Cell.

In order to let cell have good thermal contact with the refrigerator, a
thick silver film was deposited on both of the outsides of the cell. This silver

made direct contact with the refrigerator as described in chapter 5.
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Appendix C

Calculation of the Response of the TSR to a Drive

Our pancake shape third sound resonator can be treated as three
capacitors in series, as shown in Fig. C-1, the bottom and top plates are
covered with helium film which has height h. The cell can be thought of as
two capacitors filled with dielectric material with dielectric constant ¢ , and
the vacuum in between just like another capacitor with dielectric constant &,

. The capacitance for any small area dA can be written as

1 .
c c, c, (C-1)

with d —2h h (C-2)
where C; is the part of the capacitance from the vacuum inside, and Cy from
the helium films. d is the gap of the resonator, h is the height of the helium

films. The total capacitance over the pickup area is :

7% Glass —— hy
— - He film i

< Vacuum  — d-2h « CTotal
7 | - Mo

Fig. C-1 Shown a resonator just like three capacitor in series.
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g,d A

Total :J.pic:kup d —2h (1H€%) (C-3)

As we described in Chapter 2, h can be written as :

C

h =b0 +bnm an (‘r 3 ‘ID) (2'28)

with hp the static film thickness, hy, the changes from hg and

Vi (rﬂi’) =J, (knm r) cosm ¢

the wave function which described the third sound wave on the helium
surface.
Using Taylor expansion and equations (2-28) , the equation {(C-3)

becomes

2&.h (1—80 )
e[,y a)], 2 %

Total d d £

=Cqo+C, +C,

(C-4)

obviously, Cy is the capacitance corresponding to empty cell (ie. h=0). Cy
is the capacitance due to the static shift of the film. C,,, is the change in
capacitance which response to a driven third sound resonance.

The integral in (C—4) can be normalized to the whole cell in order to

simplify the calculations later on. So, we define :
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[., vnaa

W e = J,da (C5)

where P, D here represent pickup and drive. Therefore, one can write Cpm

as

(C-6)

noticed here that C,  is a function of the various modes since ¥,

represent the Bessel function which are different for different modes.
Now, one can start to calculate hp m . For a capacitor with applied

electric field E, in the case of @w=0, the force per unit mass applied to the

helium film can be written as

f=1 ﬂ V(Ez)

T2 pw (C-7)

where p is density of helium, h' is the height change of the film due to the

“electric field from the static film. Therefore,

(C-8)

We can also write the electrostatic energy as
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E,. :J l(g—so)E *hdaA (C-9)

b rive 7

the electrostatic force will be balanced by van der Waals force when the films

is in equilibrium. So, one can write Van der Waals energy as
E = 1 fln ’ dA
o "fgp () (C-10)
with b’ =h,, ¥, (r,¢) and Eym=Equm , we have (for @=0)

(e-¢g)E 2L v, dA

h, = - -
PfLu y, dA (C-11)

nm

For the case of @ #0 one can use the model of a mass on a spring, this leads:

(e-&)5*] v, da {

pr Leﬂ Yo dA 1_(&)2_£
w 0 (C-12)

h =

m

But

.Leu Y, dA :fn Jr (km r)rdr _l'ohd ¢

(C-13)
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the force acting on the film can be written as a function of third sound

velocity and film thickness, ie.

cl

- Ps
—=h
P {(C-14)

£

If the drive voltage can be written as:

A2 =/, cosawt

D rive

and then

V % 1+cos2wt v ?
2=n ~————=E§+§&i’~50082a)t

d? 2 (C-15)
so the square of the effective drive field will be
E = ..1._1{523_
¢ 247 (C-16)

substituting (C-5), (C-13), (C-14), and (C-16) into (C-6) one finally has

AC Co _( —ﬁj<w.mn )P %(8 —&V,’h (V’m )D i

c c d 2 o,V i
2,27 1 2 1120 =
| pd C3(1 P )Jm (%, ) (a)) 5

nn
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Appendix D

Calculation of Mode Splitting

The calculation that we present here is a summary of reference [ D.1 1.
The calculation, however, gives the general results of a frequency splitting
due to an arbifrary flow field in the disk shaped resonator. I have decided to
present this result here since it gives a universal result for this kind of
problem. I would like to thank Professor Ralph Baierlein here for his kind
help.

Start again from our equations of motion in Chapter 4.

o ~
——=—gVh -V v
at J (v" ) (3.17)
ah’ - e -~ ’
8t=—h0(V )=n' V-3, =% Vh (318)
If we define :
1
hy P2, .
U=<h ,(—;-J v E{uo,u}
(D-1)

Here g is van der Waals force. The equation (3.17 ) and ( 3.18 ) with new

wvariables are

P =—afgh, ﬁ’-u"—-v-(v_’ouo) (D-2)
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du .
g-g—:—q/gh o Yug—vy Vi —u - Wy (D-3)

We can write these two equations ina 2 x 2 matrix form.
a u 0 - O - gh 0 ﬁ ! u 0
dt \u —Jgh, \YJ 0 u
=q [UfJHB [Uf]
u u

This is equivalent to

+
|
<]\
o
o—
o
|
5*
<]
' o
<]
Sy
<
~—
M
AT
oo
I o
N

(D-4)

ig:aU+ﬁU
dt (D-5)

Let Uge “«F satisfy —i0,U,=aU, If 8 isasmall perturbation, then
Ue™ " satisfies equation (D-5) to first order if we add a perturbation term,

ie. let

U=(Ua +6U)e_i(m“+m) (D-6)
Substituting this into equation (D-5) leads to
-itAoU,~iw,6U=adU+8U, (D-7)

The second order terms have already been dropped in equation (D-7).
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Using the scalar product with U; in (D-7) and our boundary conditions,

(D-8)

i)
o)
i
It
=

where ds = element of arc length but with direction of outward normal to

boundary. After algebra, we finally have :

bo = iz | Jo o Fense= 5o (7w (75
4108 $ (V- Vo) Vu, a3 }
2@3 ’ 0 0 0

(D-9)
Where the first two integrals inside of brackets are integrated over the inner
surface of the cell, and the last one in the brackets is integrated around the

perimeter enclosing the cell area.

If ¥o=Vn (knm f)eim * and v,=v,{r)¢ ,we have

Vol © h,g J,dd, *° -
Aw =${J’Ji —'P“](:.—)da—z; JZ rdr Z'(VXVO)da

+El—9%—3gv0(r) T O rA-d_é }

20, rar (D-10)

If the flow field is

volr)=vel)

R

(D-11)
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then Vxv,=0 anywhere except at the origin. The third sound cell
geometry has no origin because we have a hole in the center of the cell. So
we can ignore the second integral in equation (D-10). The line integral in the
equation (D-10) can be evaluated by substituting in our boundary condition.

So the integral is zero at the r=a circle required by the boundary condition

daJ,
dr  ; the integral is

-2 7 avyla)lim T 4, =—17rk7' avylald, ,
rdr

(D-11a)

this equation hold for r goes to zero, around the perimeter of a little hole at
the center of the cell. This term is not zero only for the ( 1,1 ) mode after
taking a limit.

The final result of equation (D-10) is

Ao vi(a) 2n X, P a2« 1
©, C (x2 -’} 32(x,,)

nm m

(D-12)

where Xpym=kym a. If the flow field describes solid body rotation, then

(D-13)

where @, is the solid body rotation frequency. The third integral in the
brackets of equation (D-10) yields zero at this case when the boundary

conditions are applied. The second integral, however, is not zero because of
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Vxv,=2m, 7 . (D-14)

Aw via 2 ]
- = ynrn Xmm ( ) 1 - 2 2 m wu .
@, a n (D-16)

One point I have to make here is that we had originally calculated this
perturbation a slightly different way. Our original calculation differs from Dr.
Baierlein's in the last term in equation (D-12). We have - 0.150 9, ; instead
of -0.125 6, ; which he has. The main reason for this difference is that we
dropped off the second order terms before we did the perturbation where as
in reference [D.1], this was done after. Although the two results are similar, I
tend to believe his results and have used it in the analysis presented in this

thesis.
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Appendix E

Data Taking and Fitting Programs

Appendix E gives all programs used for taking data and data analyses
in this work. For a complete description of these programs, please see the

comments at the beginning of the programs.
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(5% R R S SO S o o 3 %ok 30 S % 3 ORI S OR300k ok S S Nk XA

C THIS IS THE FITTING FUNCTION USED BY A LEAST-SQUARES

C FITTING ROUTINE. PASSED VALUE OF I 1S USED TO FLAG THE REAL
C OR COMPLEX PART SINCE THE FITTING ROUTINE IS NOT SET UP

C FOR COMPLEX DATA TYPES. THE FUNCTTION IS THAT OF A MASS
C ON A SPRING ASSUMING EXP(-iWT) TIME DEPENDENCE.

C’5-*’(-***%X—X—:{-#{-H’-*’(-P{-5{->{-=€-=€->(-=E-={-*’E-**************){-X—*****ﬁ-********X—**%******ﬁ'****

FUNCTION FUNCTN(XLA)
IMPLICIT REAL*8 (A-I1,P-Z)
DIMENSION X(200),A(10)
COMMON NPTS

IF 2*L.GT.NPTS) THEN
C IMAGINARY PART

PHI=A(4)-1.5707863
FUNCTN=A(6)

ELSE
C REAL PART
PHI=A(4)
FUNCTN=A(5)
ENDIF

U=2*A2)*(1-X(1)/ A(1))
FUNCTN=FUNCTN+AG*U*COS(PH)-SIN(PHI))/ (U*+1)

RETURN
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END

C >f—>i->f->€->4-)€->(->ﬁ-*H’ﬂ-***ﬂ->{-’(—=(->{‘>(->£-**)&************H—?&X—*%*X—****X‘*%’E*****X—

C SUBROUTINE FDERIV(X,I,A,DELTAA NTERMS,DERIV)
C IMPLICIT REAL*8 (A-H,P-Z) DIMENSION X(200), A(NTERMS),
C DELTAA(NTERMS),DERIV(NTERMS) COMMON NPTS

C3&-***3&-****=€'>€->{-={-=‘.’-***—*#‘*3{-****3{-:{-**5&-*‘***2{-***5{-3{-%*********%*****ﬁ-i—*

IF(DELTAA(1).NE.0O) THEN

C NUMERIC DERIVITIVE

DO J=1,NTERMS
AQ)=A(N+DELTAA()
FPLUS=FUNCTN(X, A}
AMN=AJ-DELTAA®J)
DERIV(])=(FPLUS-FUNCTN(X,LA))/DELTAA(J)
ENDDO
ELSE

IF (2*LGT.NPTS) THEN

C IMAGINARY PART

PHI=A(4)-1.5707863

DERIV(5)=0
DERIV(6)=1
ELSE
C REAL PART
PHI=A(4)
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DERIV(5)=1
DERIV(6)=0
ENDIF

FMU=1-(X(I)/ A(1))

U=2*AQ2)*FMU

FDEN=U*U+1
DFDU=2*A3)*((2-FDEN)*COS(PHD+2*U*SIN(PHI})) / FDEN**2

DERIV(1)=DFDU*A2)*X{T)/ A(1)**2
DERIV(2)=DFDU*FMU
DERIV(3)=(U*COS(PHI)-SIN(PHI))/ FDEN
DERIV(#)=A3)*(-U*SIN(PHD-COS(PHID)) / FDEN

END IF

RETURN
END
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C>€->{->{-K"{-*ﬁ-#-?(-?{-*)(-3{-*-3{"(’**:&-****%—J(r)é-*>{->(->£->€-3(—){-*36—>(—>(->F3€-3{-3(-*36-7(-5{-***’(—’E"E—*-X-X—!&3&3&-){-*:{-***3{‘******3{-*%*

A PROGRAM USED TO FIND PARAMETERS OF THE ROTATIONAL
DRIVE CRESPONSE FUNCTION BY MINIMIZING THE MEAN
SQUARE DIFFERENCES BETWEEN THE DATA OBTAINED FROM
FITS TO THE RESONANCES AND POINTS CALCULATED FROM
THE RESPONSE FUNCTION SCALC. BOTH DATA AND
CALCULATIONS ARE COMPLEX.
THE PROGRAM USES MINIMIZATION ROUTINE "AMOEBA”
FROM NUMERICAL RECIPES, P.292

LAST MODIFIED 7/92

C**X—#{-X—***ﬁ-’l—ﬁ-3&-3(‘>£~>E>£~7(-3(-2{‘36-3(-7(-*>(->E->l-=i-’(—’(—>€-X—>&3&-3{-*****%*>(-=i-*X—’(—**X—X—ﬁ-**********5{-***5{-**

O O 00000 0n

PROGRAM FLIPFIT

IMPLICIT REAL*8 (A-H,0-Z)
COMMON NDIM,5ZM
DIMENSION P(10,10),Y(10)
DIMENSION A(10),B(10),5Z(10)
COMPLEX*8 SCALC,51GC
COMPLEX*8 SIGDAT(-1:1,-1:1)

C GET INITIAL PARAMETERS - LOOP TERMINATED BY "Z

INPAR=1
DO WHILE(INPAR.EQ.1)

TYPE 7, INPUT AMPLITUDE, THETA, AND PHI >
7 FORMAT('$ A) |
READ(* * END=1)(A(I),I=1 NDIM)

C CHECK VALUE

FVAL=FUNK(A)
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FVAL=SQRT(FVAL-1}/2
TYPE*,' FUNCTION='FVAL
TYPE*

END DO

C FILL UP P ARRAY WITH CUBICAL SIMPLEX BASED ON GUESSED
C POINT Y GETS THE FUNCTION VALUES AT THOSE POINTS.

1 DO I=1,NDIM+1
DO J=1,NDIM
IF(J.EQ.ITIIEN
P D=A+SZ({])
ELSE
PED=A()
END IF
B()=P(L])
END DO

Y(D=FUNK(B)
C TYPE*,LY(I)

END DO
FTOL=(A(1)/1000.)**2
TYPE* FTOL

ITER=0

CALL AMOEBA(P,Y NDIM,FTOL,ITER)

C PRINT RESULTS (SMALLEST OF THE SIMPLEX POINTS)

MIN=1
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DO 1=1,NDIM+1
TE(Y(D.LT.Y(MIN))MIN=I
END DO

DO I=1,NDIM
A(D=P(MIN,D)
END DO

C DON'T ALLOW NEGATIVE DELTA...

IFCOS(A(2)).LT.0)THEN
A(2)=3.1415926-A(2)
A(3)=A(3)+3.1415926

END IF

C REDUCE ANGLES TO -PITO P1

AR)=REDUCE(A(2)
A(3)=REDUCE(A(3))

DO I=1,NDIM
TYPE 2,LA(D)
2 FORMAT{' A(,12,)=,1PE10.2)
END DO
DO IP=-1,1,2
DO IQ=-1,1,2
SIGC=SCALC(A(1),A(2),A(3),IP,IQ,M)
WRITE(*, 10)IP,IQ,SIGC
10 FORMAT(2X,215,2X,F10.4,2X,F10.4)
END DO
END DO
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TYPE*
FVAL=SQRT(Y(MIN)-1)/2
TYPE* FUNCTION VALUE=EVA
STOP
END

(:*******%*****%***t**************%*********%*****%*********%****%*%**

FUNCTION TO BE MINIMIZED. A{(I) ARE THE FUNCTION'S
PARAMETERS, AND 5Z(1) SOULD BE ROUGHLY THE
CHARACTERISTIC LENGTH SCALE FOR EACH PARAMETER. SET
NDIM TO HOW MANY PARAMETERS ARE USED. IN THIS CASE,
THREE PARAMETERS ARE USED: A(1)=AMP, RELATED TO THE
OVERALL STENGTH OF THE RESONANCES; A(2)=THE, THE RATIO
OF THE CIRCULATION TO TOTAL SHIFT; AND A(3)=PHI, THE
GEOMETRICAL CASYMMETRY ORIENTATION. THE DATAISIN A
FILE SIGDAT. DAT AND FUNCTION SCALC IS THE THEORETICAL
RESULT.

(:************************************************%*******************

o0 00O 000000

REAL*8 FUNCTION FUNKI(A)
IMPLICIT REAL*8 (A-H,O-Z)
COMMON NDIM,S5Z,M
COMPLEX*8 SIGC,SIGD
COMPLEX*8 SCALC
COMPLEX*8 SIGDAT(-1:1,-1:1)
DIMENSION A(10),SZ(10)
DATA NDIM,5Z2/3,.1,.1,.1,7%1./
DATA IFIRST/1/

C READ IN DATA THE FIRST TIME CALLED
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IFIFIRST.EQ.1)THEN

OPEN(1,FILE='SIGDAT.DAT STATUS="OLD", CARRIAG
FECONTROL='LIST")

READ(1,*)M

DO IP=-1,1,2
DO IQ=-1,12
READ(1,8)SIGDAT(IP,1Q)

8 FORMAT(2F10.3)

END DO

END DO
I[FIRST=0

CLOSE(1)

END IF

AMP=A(1)
THE=A(2)
PHI=A(3)

C SUM UP THE ABSOLUTE ERRORS

FUNK=0

DOIP=-1,1,2
DO IQ=-1,1,2
SIGC=SCALC(A(1),A(2),A(3),IP,IQM)
SIGD=SIGDAT(P,IQ)
FUNK=FUNK+CABS(S5IGD-SIGC)**2
END DO

END DO :
FUNK=FUNK+I

RETURN
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END
C THIS FUNCTION REDUCES ANGLES TO -PI TO PI

REAL*8 FUNCTION REDUCE(X)
IMPLICIT REAL*8 (A-Z)
PARAMETER (PI=3.14159265,TPI=6.28318531)

DO WHILECX.LE.-PI)
X=X+TPI
END DO

DO WHILE(X.GT.PD
X=X-TPI
END DO

REDUCE=X

RETURN
END

C3(->€->£-******>F’(-*3(-*’('*>€'5('3(-**X‘**){-)ﬁ-**3(-#-’4-:{-****’4—*7{-*3(-3{-31-**K—*X—X—**K—*****x—***x—***i—*ﬁ-

C THIS FUNCTION RETURNS CALCULATED VALUES FOR THE

C COMPLEX RESONANT AMPLITUDE FOR A ROTATIONAL DRIVE.
C AMP=AMPLITUDE CIRCULATION=(TOTAL SHIFT)*SIN(THE)

C GEOMETRIC SHIFT=(TOTAL SHIFT*COS(THE) PHI=GEOMETRIC
C ASYMMETRY SPACIAL PHASE 1P=+1/-1 FOR UPPER/LOWER

C MODE IQ=+1/-1 FOR RIGHT/LEFT DRIVE M=1,2,3... MODE M

C VALUE

C SEE H. LUQ, 1992.
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COMPLEX*8 FUNCTION SCALC{AMP, THE,PHLIP,IQO,M)
IMPLICIT REAL*S (A-H,0-2)

C ONLY ALLOW +/-1 FOR IQ, IP
IF {((ABS{IP).NE.1).OR.(ABS(IQ).NE.1)) THEN
SCALC=CMPLX(0, 0)
RETURN
END IF
K=(M-1)/2
IF (MOD(K,2).EQ.0y THEN
SGK=1.
ELSE
SGK=-1.
END IF
IF (MOD(M,2).EQ.1) THEN
C ODD M VALUES...
C=IP*(IP+IQ*SGK*SIN(THE)+COS(THE)*COS(PH]I))
D=IP*(-COS(THE)*IQ*SGK*SIN(PHI))
SCALC=CMPLX(C*AMP,D*AMP)

ELSE

C EVEN M VALUES...
C=1.+COS(THE)*COS(PHI)
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SCALC=CMPLX{C,C*SGK*IQ)
SCALC=(0, 0)
END IF
FIX UP COMMON FACTOR OF 1 OR i...

IF (IQ.EQ.-1) SCALC=CMPLX(0.,1.)*SCALC

RETURN
END
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