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Introduction

High amplitude, third sound waves are found to accelerate and decelerate circular
flow states in thin films of superfluid helium. The observed swirling action is a
quantum mechanical feature. In our experimental cell, circular flow depends upon a
distribution of quantized elements of circulation, called vortices. In order to change
the circulation, the distribution must be permanently rearranged. Ordinarily, vortices
are pinned by the roughness of the substrate surface. However, the sloshing of the
third sound wave may displace vortices. Experimentally, we find that swirling depends
upon the wave amplitude and the temperature. In this thesis, we introduce the
swirling mechanism as a flow assisted thermal activation of pinned vortices.

Third sound is a wave mode that travels through thin films of superfluid helium.
They are similar to long wavelength gravity waves and can be analogous to tidal motion.
QOur film thickness ranges from three to twenty atomic layers. In this microscopic
regime, gravity is negligible and the van der Waals acts as the primary restoring force.
The third sound wave is remarkably well described by classical hydrodynamics. The
macroscopic equations of motion are identical to that of a non-viscous classical fluid.

In the lab, we study traveling waves on the inner surfaces of a circular cavity about
the size of a dime. The relevant dynamics include a superposition of the third sound
wave and a background circulation. The wave may be visualized by holding a bowl of

water and agitating it in a small circular motion. The background circulation is a




Introduction 2

uniform rotational motion of the fluid. Notably, at low temperatures, the wave
dissipates energy, but the circulation persists.

The circulation we encounter in the lab cannot be derived from classical physics.
In butk helium, the circulation is quantized as vortices. A vortex is a singularity in the
flow field, analogous to water swirling around a drain. Unlike their classical
counterparts, our vortices persist on timescales much longer than the length of our
experiments.  Although no direct experimental evidence demonstates the existence of
quantized vortices in thin films of helium, a distribution of vortices can gives rise to the
experimentally observed flow fields.

In addition to the circulation, energy dissipation of the third sound wave results
from vortices. In superfluid films, energy dissipation has traditionally been linked to
thermo-mechanical effects.  Temperature oscillations, associated with the wave
agitation, give rise to imperfect thermal exchange between the fluid and the substrate
surface, between the fluid and the surrounding vapor and within the fluid itself.
Current models have not been correctly able to account for the unexpectedly large
dissipation associated with the third sound wave. In our model, damping results from
frictional losses as vortices are dragged across the substrate surface.

Damping of the third sound wave is intimately related to the circulation. In
order to change the circulation, vortices must be permanently moved. To move a
vortex, work must be done against frictional contact with the substrate surface. The
energy required to move vortices emerges as an acceleration or deceleration of the flow.
There is an unambiguous relationship among the energy transfer, the change in the
circulation and the rearrangement of vortices.

The motion of vortices, as both a hydrodynamic and topological problem, is
subtle and not well understood. QOur model circumvents these shortcomings by
considering only the energetic aspect of the physical system. At any point in the cell,

the wave velocity oscillates back and forth. If the forward wave dissipates more energy
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than the reverse wave, the wave will increase the circulation. By symmetry, the
converse also holds. Swirling results from asymmetric dissipation of the forward and
reverse wave flows.

Generally, vortices are pinned to imperfections in the substrate surface. The fluid
is telatively shallow over a bump. Less fluid associated with the vortex flow field
cotresponds to a lower energy state. Vortices are trapped in these potential wells. The
number of free vortices is associated with thermal activation. As the temperature or
the external flow increases, de-pinning is increasingly probable. In our model, only free
vortices may affect the circulation. .Consequently, switling is considered a flow assisted

thermal activation of an existing reservoir of pinned vortices.

1.1 Experiment

Central Hole Epoxy
—= T —
Glass  Pickup
Drive 1
Drive 2
Ground
Figure 1.1

In our experimental setup, liquid helium is adsorbed onto the inner surfaces of a
small hollow disk. At our film thickness, the van der Waals attraction to the
surrounding surfaces dominates. Since superfluid has no viscosity, it spreads to cover
all surfaces equally. At the center are two small holes through which helium enters the

cell. Notably, in our analysis, we discount the presence of the holes, a complication that
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is relatively small. Above and below the disk are a series of capacitor plates: two drive
plates and one pickup plate. Since helium is a weak dielectric, we can oscillate the film
by applying an oscillatory voltage to the two drive plates. In addition, we can
determine the amplitude and frequency of our third sound wave by measuring the
change in capacitance at the pickup plate. Notably, the third sound frequency is twice
the drive frequency because the force on a dielectric is related to the square of the
electric field. In order to collect the data, we step through drive frequency and measure

the resulting wave amplitude.

1.2 The Wave

At low amplitudes, the third sound waves are Bessel functions. These solutions
are consistent with the experimental values for the resonant {requencies of the normal
modes. In order to derive the wave solutions, we assume an incompressible, classical
fluid, without viscosity and in the long wavelength limit. Typically, the wavelength is
millions of times greater than the film thickness. In this limiting case, there is no
significant vertical acceleration. Height oscillations are due only to motion parallel to
the substrate surface. They are a consequence of incompressibility. The equations of

motion are given by the following.

— =gV
ot (1.1, (1.2)

on =
‘”a}"'- = hDV . <v>

The first equation is a linearized form of Euler's equation and is analogous to Newton's

second law. The second equation is a statement of incompressibility. m is the fluid's
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vertical deviation from the average height. The triangular brackets indicate an average

over the film thickness, defined as follows.
v Y= — | —%dz (1.3
o)=L |2

In the long wavelength limit, we discount the vertical component of the fluid velocity.

The derivation of these equations is given in appendix A.

Fundamental Constants

c;  third sound speed
hy  average fluid height
g characteristic van der Waals strength
a  experimental cell radius
p  fluid density
myes mass of helium-4 atom
k  wave number

h . . h .
Xnn 0 zero derivative for m™ Bessel function

Table 1.1

If we assume oscillatory solutions, we may solve by a separation of variables.

Elimination of v from equations (1.1) and (1.2) gives rise to the wave equétion.

Vin+k*n=0 (1.4)
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In cylindrical coordinates, the radial solutions are Bessel functions. The oscillation
frequencies are governed by the boundary conditions. The radial velocity must be zero
at the rim (r=a). Because of the driving mechanism, we can only excite modes that are
symmetric across the top and bottom of the cell. Symmetry does not permit a non-zero

radial flow at the rim.

f xmn
wm,n = CBkm,n = gho a (15)

Here, k., is the wave number, ¢; is the speed of sound through the fluid, and x,,, are

the arguments for n™ zero derivative of the m'™ order Bessel function.

03:\/%

X (1.6), (1.7)

The resulting wave modes are given as follows.

1= My ]y (R} 770

c,a o

V= e (k) e (1.8), (1.9, (1.10)
mnu ¢

v, :iﬂm,n C;a Ejm(kr)'ei(mgi—u}t)
mn 0

When we drive the fluid, all of the modes are activated. However, near
resonance, we can assume that only one mode is present. This assumption is valid,
because the experimental, resonant frequencies are well correlated to single dominant

modes. Modes on rtesonance are Q (10000-500000) times larger than those off
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resonance. The current paper focuses on circularly polarized, traveling wave solutions
for the (2,1) mode. A snapshot of the wave is given by figure 1.2. Without a
circulation, the time evolution can be visualized by rotating the figure about the central

axis.

Figure 1.2

1.3 The Splitting

At low amplitudes, the resonance responds like a damped mass on a spring. In
our cell, there are actually two modes with the same frequency. The two modes
correspond to clockwise and counterclockwise waves. For a perfectly round cell, the
clockwise and counterclockwise waves are identical. Given a background circulation,

one wave will travel faster than the other.
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Slower
Wave
Background

Faster
Wave

Figure 1.3. Third sound waves in a circular cell.

Each wave will experience an equal and opposite Doppler shift.

Minus Mode/ Plus Made/
Slower Wave Faster Wave
Center
Frequency
826 828 830 832 834 83

Figure 1.4. Frequency splitting from a Doppler shift.

For a one-dimensional plane wave, the frequency splitting is equal to the background

flow.

ﬁesonant - f;enter - Ubﬂﬂkgmund (1 11)
f:?en.ter CS

In a circular cell, the circulation is a function of the radius. The measured, frequency

splitting is a weighted average over the entire flow field.

fresonanz - ﬁ:‘enter — + %LW (1, 1 2)

f —{mn
cenler Cy
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The weighting factor, ¥.,., relates the size of the frequency splitting to the circulation ar
some convenient (and arbitrary) radial location, 1. The factor depends only on the
given mode. Qualitative features of the circulation are independent of the size of the

splitting. The relationship of the frequency splitting to the underlying flow field is

given rigorous treatment in both Hai’s and Crista’s dissertations. To avoid

redundancy, only the final result, equation (1.13}, is presented,

. 2m s @@ d
Y o T j 0, (), () == (v, ()

(1.13)

where, x is the scaled radial coordinate defined as
x=—"op (1.14)

Both Crista and Hai set r;=a. The weighting factor depends upon the choice of r,.
Presently, 1, is an adjustable parameter.
In theory, if we have the frequency splitting for all the modes (there are infinitely

many), we can know the exact radial dependence of the circulation. Qur

understanding is limited by the fact that we can excite only a few modes.
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1.4 The Circulation
K= §;’S -d ?
94

If a classical fluid is incompressible and subject to conservative forces, the
circulation is a constant of time (Kelvin's circulation theorem). Qur fluid does not
exhibit viscosity and only responds to the gradient of the pressure, the van der Waals'
attraction and the electrostatic driving force.  Classically, we cannot create a
circulation. In the previous section, we uncovered a circulation from the frequency
splitting. This phenomencon is a quantum mechanical feature that requires the
introduction of vortices.

There are numerous speculations on the formation of vortices. 'They may be
generated by the turbulence of boiling as helium is cooled through the supertluid
transition temperature. Vortex-antivortex pairs may occur spontaneously by thermal
activation, analogous to pair production of electrons and positrons at high
temperatures. Although a vortex costs an enormous amount of energy, they may
persist at extremely low temperatures. QOur experiments run at tenths of a Kelvin.
Because of pinning, they do not have the opportunity to find one another quickly and
annihilate,

Vortices are the circulation quanta. For a superfluid, the velocity is quantized.
Let's derive the quantization conditions and see how a distribution of vortices can give
tise to a circulation. Start with a uniform quantum fluid. The probabﬁility of finding

any bit of fluid is constant.
probability = |‘PI2 =’ (1.15)

From this assertion, the wave function is known to within a phase factor.
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P = e (1.16)

In a small element of fluid, dV, the expectation value of the momentum is given by the

following.

by

- ; N -
<P> = —(‘P | ‘P) = hVO(r) (1.17)

The momentum is simply my.v..

- h

Ve = — V() (1.18)

mHe4

Take the integral of each side over a closed path.

fredi = h fva(al

Hed

= —((I)srarr _(Dend) (]‘19)

Around any closed loop, the phase change must be an integral multiple of 2.

Therefore, we may define the circulation quantization as follows.
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N {1.20}

Fzsd} =27

mHe4

From Kelvin's circulation theorem, the fluid is curlfree everywhere except at points for
which the velocity is undefined. These points are vortices.
We can directly integrate equation (1.20) over a circular path and calculate the flow

tield for a single vortex at the origin.

;s(r)ziégg (1.21)

mHe4

From the flow field, we can calculate the energy of a vortex.

2
E= jlvzdm = n‘p{LJ Ln[é)
2 mHe4 a

{1.22)

Here, a (=1 angstrom) is the vortex core size, b is a characterisic distance between
neighboring vortices and n is the number of vortices per unit area. With a circulation
d no pinning, th bout 10* vorti i With pinning, th
and no pinning, there are about vortices per square cenfimeter. 1th pinning, the
11 . .
number may be as large as 10" vortices per square centimeter.

A collection of vortices within a closed path gives rise to a circulation.

o1
- Nenclosed (7') ( 123)

vbackgrouna' (r) =
Hed
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(a) (b)

Figure 1.5. A path integral over the velocity field may be broken into two steps. The result is the sum of
steps (a) and (b). (a} Since vortices are excluded, the intepral is zero. (b) The intepral depends only on
the number of enclosed vortices

Equation (1.23) relates the background circulation to a distribution of vortices. An
integral of the velocity field over a closed path depends only on the number of enclosed
vortices. [f vortices are excluded, the integral is zero.

To understand how vortices may create or alter the circulation, consider two
limiting cases. Assume a uniform distribution of vortices such that along every
concentric circular path there is an equal number of positive and negative vortices. In
this case, the circulation is zero. Now, move all of the positive vortices to the center
and all of the negative vortices to the outer rim. Every concentric circular path, for
which r<a, encloses a net number of positive vortices. The important conclusion is
that radial displacement of vortices may alter the circulation. If a positive vortex is
moved toward the center, the circulation increases. If it is moved toward the rim, the
circulation decreases. The converse holds for negative vortices. Actually, only a small
polarization of vortices is necessary to change the circulation. The effect depends upon
the density of vortices. The higher the density the smaller the polarization necessary

for a given change in the circulation,
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The third sound sloshing may cause this polarization. Given an external flow, a

vortex will experience a force according to Bernoulli’s law.

Vortex
Low
High Pressure
Pressure
—

Magusg Force

Background
Flow

Figure 1.6. On the left side, the flows subtract. On the right side, the flows add. Higher flow
corresponds to a lower pressure. Given an external flow, a vortex is subject to a Magnus force that lies
along the pressure gradient.

On one side of a vortex the vortex flow and the external flow will add. On the other
side, the flows will subtract.  Higher flow corresponds to lower pressure.

Consequently, there is a Magnus force in the direction of the pressure gradient.

Fmagrm's = pk‘}’og X (;vorlex — ;extema!) (124)

Moving a vortex perpendicularly to the flow requires a drag force. A vortex has

no mass. Without a drag force, the vortex will move with the flow.

Foe = Fmagnus = p’fhgé X (vvorrax - vextemal) =0

(1.25), (1.26)

—_ —_

Vvorter = Vexternal
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If we introduce a drag force, the vortex motion has components both perpendicular

and parallel to the external flow.

Zero A
Friction
A A A
Infinite
Friction
Vortex
Background

Figure 1.7. Initial vortex direction corresponding to different levels of frictional contact with the
substrate surface.

Fner = Fmagnus +Fﬁ'iction = pK:hOQ X (vvortex - vextsmal) - yvvortax = O

Vv, = vc‘n'tin:‘ai
1 1 2 "external
+vcﬁtical
1
V= —mmV
I 2 7 axternal
1 + vcn'tz‘ca!
Y
critical
pih,

(1.27), (1.28), (1.29), (1.30)

The critical velocity is the minimum external {flow necessary to overcome frictional
drag.

So far, our discussion is somewhat speculative. There is no way to detect directly
a vortex in a superfluid film. By now, the reader should appreciate the complexity of
this system. We have not even considered many other dynamics such as interactions
among multiple vortices. However, we can dispense with these subtleties and consider

only the energetic description. (1) To change the circulation, vortices must be moved
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perpendicularly to the circulation. (2) To move a vortex, work must be done. (3) We
assume that this work is proportional to both the total motion as well as the
perpendicular motion. (4) Consequently, this work materializes as both a damping of
the third sound wave and an acceleration or deceleration of the background

circulation. These four statements may be simply stated by the following.

av background <

Py RNﬁee;superﬂuid> (1-31)

We attribute the change in the background circulation to linear damping averaged over
a wave cycle. The acceleration depends upon the relative size of the forward and
reverse wave velocities. The Nj., factor is necessary because only free vortices may do
work. R is a constant. In our model, there is a direct relationship between the energy
dissipation and the acceleration or deceleration of the background circulation. This

relationship is buried in the constant R, which is an adjustable parameter.

The Wave Velocity

[n two previous sections we contradict ourselves. Equation (1.10), the azimuthal
wave velocity, cannot exactly describe our system. There are two inconsistencies. If we
average the wave over a cycle there is a net mass flux. Since the velocity is linear, the
magnitude of the forward and reverse flows are equal. However, there is more fluid

under the crests than under the troughs.
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Wave Height
e
E—
< > +—

Phase

Figure 1.8. The wave height as a function of angle. For a linear wave, the magnitude of the velocity is
equal under the crests as compared to the troughs, Since there is more fluid under the crests than under
the troughs, a net mass of fluid moves rightward.

2
- 1 ~ 1 (M. ma ¥ N
Vanp = E«h{) +7])-v¢>¢ —Ec{ p J x—;Jm (x,. g)cos(mgé——a)t).;b

0 m.n

(1.32)

The wave induces 2 nei drift, a result that violates Kelvin's circulation theorem.
Secondly, a linear wave cannot have a net effect on vortices. If the forward and reverse
flows are symmetric, energy dissipation (hence vortex motion) is also symmetric, a
situation that cannot swirl the film.

Although our wave solution is incorrect, the Bessel function solutions must be
approximately right. If we require that the mass flux is balanced between the forward

and reverse flows, we can “cook up” a new wave velocity.

Vs
= (1.33)
T+n

vqﬁ, nonlinear
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The above equation is a convenient manipulation of first and second order terms.

Here, the reverse flow is bigger than the forward to compenste for the wave height

\

! Phase
Peaks and
Troughs are
Asymmetric

difference.

Wave Velocity

Figure 1.9. "Cooked up" wave velocity is bigger at the troughs to compensate for the wave height so that
the net mass flux is zero.

Although this result is not rigorous, it matches all of physical elements that we require.
A full analysis would require a solution to the nonlinear equations of motion to second

order.

1.5 Thermal Activation

In the current model, we attribute the number of free vortices to thermal
activation. This treatment is similar to a gas absorbed onto a two-dimensional surface.
Gas molecules may be attracted to the surface in a variety of ways: electrostatic, van der
Waals, etc. Regardless, the attraction corresponds to a potential well. In the simplest
case, the ratio of desorbed molecules to total molecules is proportional to a Boltzman
factor.

In choosing this model, our initial motivation is empirical. The article by Ellis
and Wilson have demonstrate a linear relationship between a combination velocity and

the log of the deceleration of the circulation.
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e s s s e e

.............. LoLrrerge e op] e e a1

Deceleration
-

I a *
ﬂ-'E 1 ius wah L r 1 A 1
) 0.8 T 1.5
Combination Velocity
Figure 1.11
vcombination = vpeak + %vbackground (134)

The peak velocity is the maximum wave velocity and T, is an adjustable parameter.
Because of the inverse dependence on temperature, attributing the change in the

circulation to thermal activation is appealing.

&(¥ peat -V background )

N g = ge < (1.35)
NO

The numerator in the exponential is the pinning energy. A larger flow gives rise to a
shallower potential well. As & decreases, depinning a vortex becomes increasingly

probably.
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1.7 Summary

Although the third sound wave is remarkably well described by classical
hydrodynamics, the film may be set into uniform rotational motion only by an
arrangement of quantized vortices. For this teason, swirling requires net radial
displacement of vortices. The specific vortex dynamics are complicated and a matter of
speculation. The present model exploits the energetic description. Radial motion of
vortices requires both a Magnus force and a drag force. The wave agitation generates
the Magus force. We model the drag force as frictional contact between a vortex and
the substrate surface. Assymetric energy dissipation by the forward and reverse wave
flows gives rise to an acceleration or deceleration of the circulation. Empirical
relationships suggest thermal properties. The swirling process is found to be
proportional to a Boltzman factor. Generally, vortices are pinned to imperfections in
the substrate surface. In the model, we attribute the depinning of vortices to thermal
activation. The central theme of the current paper is expressed by a combination of

equations {(1.29) and (1.33).

5(vpeak :vbaclgfoand) .

S Roe o Vsup erfluid (1.35)

a Vbackground

ot




II
The Model

In order to model the swirling action, we examine the third sound resonance
(drive frequency v. amplitude). Particularly, we investigate the (2,1) plus mode (the
faster wave). The resonance exhibits three distinct features. At low amplitudes, it
resembles a damped and driven, simple harmonic oscillator. At higher amplitudes, it'is
modified by nonlinearity and swirling. The model mimics the manner is which the
data is collected. Experimentally, we step down in drive frequency and measure the
wave amplitude. The model involves an iterative procedure such that the wave

amplitude and the change in the circulation are calculated for each frequency step.

2.1 Small Oscillations

For small oscillations, the steadystate amplitude may be derived from the
linearized equations of motion. If we introduce a linear damping term and a periodic

driving force, the equations of motion, (1.1) and {1.2), may be re-expressed as follows.

0 o S 7 —iat
a—v=—gVn~yV+fo(r,¢)e
! (2.1), (2.2)
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The steady-state solution for the circular resonator is derived in Hai Luo’s thesis. For
the sake of clarity and to avoid redundancy, let us examine the one-dimensional case
for which the driving force is uniform and sinusoidal. The solutions are planes waves,
and the steadystate amplitude mimics a damped and driven, simple harmonic

oscillator.

??m,n _ _iywresonant (2 3)
2 2 . *
T?resoant a)a‘riue _wresonant Ml?’ a)drfve
The above result, equation (2.3), is identical to that of the complete solution with one
exception. For a circular cell, the boundary conditions restrict the resonant
frequencies to particular values. These frequencies correspond to each modé.

The equivalence of these two solutions is not unexpected.

(a)

{©

Figure 2.1. {a) Full wave solution. (b} Characteristic band. (¢} Plane wave.
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If we choose a characteristic radius, the resulting circular band may be unraveled to
produce a plane wave. For the sake of computational efficiency, we employ the

“characteristic band” approximation in the numerical analysis.

2.2 B-Shift

QOur equations of motion are valid only at low amplitudes. As the amplitude
increases, the resonance deviates significantly from that of the simple harmonic
oscillator. From Baierlein, Ellis and Luo, frequency shifts due to nonlinearity are

found to depend upon the square of the wave amplitude.

2
) m
resonance center . _ ﬁ L (24)
.f;'enter

This result originates from both experiment and a straightforward application of
classical hydrodynamics. The theory requires the presence of nonlinear terms that are
excluded from our equations of motion, (2.1) and (2.2). The sign of B may we positive
or negative. lts value depends upon the wave mode and the circulation. For our data,
the value is roughly .016. This result is 34 times smaller than that from Baierlein, Ellis
and Luo. The discrepancy is due to the presence of a circulation.

The B-shift comes from a coupling of the wave oscillations to a Bernoulli force.
Within the fluid, variations in the fluid velocity give rise to pressure gradients
according to Bernoulli’s law. If a multiple a wave mode frequency is close to the
Bernoulli frequency, the two frequencies will spread apart. This spreading is
approximated by the B-shift.

The effect of nonlinear terms is most clearly demonstrated by comparing the

linear and B-shifted resonances. At low amplirudes, the two resonances coincide. As
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the wave amplitude increases, the resonant frequency shifts leftward. As the resonant

frequency shifts away from the drive frequency, observed resonance is smeared

leftward.

Highi Amplitude
Solution

Low Amplitude

.Solution

Fre.q'ﬁ'é'ﬁ'éy At=P(Mme/ho)®  Frequency

Figure 2.2. left: At low amplitudes, the two resonaces match.. Right: At high amplitudes, the resonant
frequency decreases according to the square of the amplitude.

High enough amplitude waves feature a “crash”. A “crash” is a discontinuity in the
resonance, characteristic of the higher drive amplitudes. We see this feature in Figure

2.5. The figure gives the B-shifted resonance for various drive amplitudes.

Yes Crash

iNo Crash

Amplitude /

|

Frequency

Figure 2.3. The unswirled resonance for variuos drive voltages.
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The above resonances are solutions to equations (2.3} and (2.4). We approximate the

steady-state amplitude by the following,

Mo = o (2.5)

2
4Q2[fra.j:an£ _fj +1

The derivation is given in appendix B. Unlike equation (2.3), the above equation is
symmetric about the peak. Graphically, the solution for the B-shifted resonance is the

intersection of a sideways parabola {equation (2.4)) and a linear resonance (equation

{2.5)).

Amplitude Amplitude

AF f=—B{n/h)>

Linear
Rescnance

N

Frequency Fraguency

fdrive fra;onant fdrive

Figure 2.4. left: Graphically solution to equations (2.3) and (2.5). Right: Observed, unswirled
resonance.

Here, the center of the peak represents the drive frequency, and the intersection
represents the respective resonant frequency and wave amplitude. As we sweep the
linear resonance through frequency, we generate the righthand curve. At the
maximum wave amplitude, there is a distinct difference between the low and high

amplitude drives.
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Amplitude Amplitude

\ A/ =

—Bm/hy’*

N

Linear
Resonance

fresonant  Tarive Frequency farive Frequency

Solution Priorto
Crash Amplitude Amplitude

Aff f=

Solution After to
}: Crash

farive, Trescnant farve frive Frequency

Figure 2.5. Top: Solution for low amplitude drive. Bottom: Solution for high amplitude drive.

For small drives, there is only one point of intersection. As we sweep through drive
frequency, there are no discontiunities. For big drives, there are either three or one
points of intersection. When the wave ampitude reaches its maximum, the solution is
discontinuous. After the crash, the response is a low amplitude characterization of the

tail below resonance.
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2.3 Doppler Shift

Because of a Doppler effect, the frequency splitting depends upon the circulation.

Consequently, the resonance must be modified, accordingly.

A v(7,
) o6

-fcenrer CS
The splitting is directly related to the circulation, because we study the up-shifted mode
(the faster wave). Acceleration or deceleration of the background circulation depends
upon the motion of vortices, We model the energy dissipation by vortices as frictional

losses, equation (1.29).

avback round ]
agﬁ (nmn 2 vbackground) = —ai_—- = _‘R _[vsup erflm'd,¢Nﬁeed9 (2’ 7)
0

The change in the background circulation is proportional to the fluid velocity and the
number of free vortices. We average over the phase of the wave because we want to
extract the swirling contributions of the forward and reverse flows.

We associate the number of free vortices with thermal activation. [n this
framework, the number of free vortices is proportional to a Boltzman factor, equation
(1.33). A simple model for the energy of a pinned vortex is the difference between the
magnitude of the fluid velocity and some critical velocity. The critical velocity is the
minimum external fluid velocity necessary to de-pin a vortex in the absence of thermal

activation (£=0)

~ Voritical ) (2-8)

&= p ' quupwﬂuid
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p is a constant that characterizes the pinning strength. The magnitude of the {luid

velocity is the sum of the circulation and the wave velocity, equation (1.31).

xm,n

T g (721 Ycos(@)
Vsup erfluid = vcircuiazfon (ro) + CS 7; ¥ (29)
L+ 227, (22 1, ycos(6)
h, a

The phase of the wave is given by, @ = m¢ —wf . The combination of equations (1.33),
(2.6) and (2.7) model the swirling action.
aVb 2z _Pdvsuperﬁuid‘_vcm‘icat)

. ackground __ [ 7or—
aq} (nm,ni vbackgmund) - at - j}?ﬂvsup erﬂm’d,(ﬁe ! dg
0

(2.10)

The acceleration is a function of the wave amplitude and the background circulation.
Experimentally, we find that at moderate amplitudes the circulation decreases,
and at high amplitudes the circulation increases. This behavior is mimicked by

equation (2.10) and shown graphically in figure (2.6).

High
A~ Amplitude

Acceleration

Amplitude

Intermediate ¥
Amplitude

Figure 2.6. Swirling model.
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Since we are concerned only with the plus mode, a decrease in the circulation
corresponds to a decrease in the resonant frequency. Likewise, an increase in the

circulation corresponds to an increase in the resonant frequency.

2 @
° -Shifted 8
= Rﬁesonlazoe 2 High )
e g Amplitude '”;fnfmlﬁg'da;e
< < & P
T Full Model :
Low -y
! Amplitude
» : 1
A/ Ey e e Frequency i) Circulation

Figure 2.7. Lefi: [-shifted resonance v. full model. Right: Corresponding circulation at r=1,.

The above figure demonstrates the swirling modification to the resonance. Similar to
the PB-shift, a decrease in the resonant frequency creates a leftward smearing of the
resonance. Conversely, an increase in the resonant frequency causes the resonance to
be compressed rightward. All in all, the horizontal difference between the two curves is
proportional to the background circulation. At low amplitudes, the circulation is
constant, and the two curves lie on top of one another. The wave is not large enough
to activate vortices. At intermediate amplitudes, the horizontal distance grows,
corresponding to a decrease in the circulation. The resonance is characterized by a
sudden activation of vortices, We see a sharp bend at the start of the deceleration
region. In this region, the circulation decreases because the circulation is large and the
wave asymmetry is small. In the absence of pinning a dc flow will always loose energy
and slow down. At the highest amplitudes, the horizontal distance decreases,
corresponding to an acceleration of the circulation. Here, both the circulation is small

and the wave asymmetry is big. For the azimuthal wave velocity, the back flow is always
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larger than the forward flow. Consequently, the reverse flow will dissipate more energy

than the forward flow. The wave will preferentially drive up the circulation.

2.4 lterate Me

To model the resonance, we need to calculate the drive frequency versus
amplitude (fy. V. Ty To mimic the experimental procedure, we step down in

frequency such that:

-0 (2.11)

j;irive,next = f drive, previgus
j;‘enter

More Constants

At experimental time step

Mo  peak amplitude of linear resonance

v  frequency splitting weighting factor
quality factor

B strength of frequency shift due to nonlinearity

Table 2.1

We step slowly enough such that steady-state amplitude solutions are applicable. Given
a known circulation and drive frequency, the wave amplitude is given by the combined

solutions to the following equations.
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Ty
2
4Q( f resoanani f drive J 4"1

nm,n =

f resonant

2
f resonance .fcenter _ vbackgraund _ nm,n
4 B

f center C3 h 0
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(2.12), (2.13)

The first equation is rescaled approximation to equation (2.3). The second is a

combination of equations {2.4) and (2.6). Taken together, the wave amplitude is a

function of the drive frequency and the background circulation.

?]m,n = 7;"m,rz (fdn've > vbackgmund) (2‘ 14)

The wave amplitude and circulation may then be used to calculate the acceleration of

the background circulation (equation (2.7)).

aVb _P(lvmpgrﬂ.!ia’i_ eriticad }

2

_ ackground __ Kpottzmard

a(nm,n E vbackgmund ) - 51 - J’R()vsup erfluid € d@
0

We linearly interpret the new circulation, such that:

Vbaakground,next = vbackgrcmnd, previcus + a(nm,n ] vbackground, previous )A't

(2.15)

(2.16)

With the new circulation, we repeat the above steps. All in all, this is a numerical

prodecure for solving the underlying system of differential equations, a procss similar

ta Bulers method.
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The Data

An analysis of the data occurs in two stages. First, we must extract physically
meaningful information from the experimental apparatus. In other words, an
electronic signal must be interpreted as the third sound wave frequency and amplitude.
This process is well documented in the references. Presently, only a brief outline is
given. The second stage involves a direct fit to the model. The data spans three
temperatures and two drive amplitudes. Correct temperature and drive amplitude
dependence lay strong confirmation to theory. However, certain qualitative
discrepancies suggest that the vortex dynamics may be more complicated than that

which is presented in the current model.

3.1 The Preparation

Two steps must be accomplished to prepare the data for our analysis. First, we
need to sort through the myriad of electronics that we use to observe the third sound
wave. Qur observations are modified by a background signal and a phase shift.
Secondly, the electronic signal must be converted into a physically relevant form. The
wave height is measured from the change in capacitance at the pickup plate and

recorded as a voltage.
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The raw data features both translational and rotational shifts. Consequently,

equation (2.3} may be re-expressed as follows.

nm,n - l ?/ a)rexonam ip 3
= e+ xbackgraund + Iy background (3' 1)

2 2 .
M esoant Dsive ~ Drgsonant — 1V O giive

The rotational shift, ¢, is due to the relative phase of the drive and pickup plates as the
electronic signal passes through various filters. The translational shifts, x and v, are due

to electronic cross talk as well as mechanical vibrations of the cell.

tmaginary Imaginary
—005 00501 o5 e . : . . 15 R
~0.025
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- 0.1
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0.125 |
0.1
0.075
_ 0.05
. 0025
o1 0m oo oq Red _01  -005 , vos o1

Figure 3.1 The real and imaginary components of the wave amplitude. Top: The left diagram is a plot
of the raw data. The right side demonstrates the translational and rotational shifts. Bottom: Analogous
plots for which the backaround and phase are removed.
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In the complex plane, the steady-state oscillation amplitude lies on a circle. In
the above figure (3.1), we may compare the raw data to the filtered data. The raw data
is not only rotated but also laterally shifted. We remove the background and phase by
requiring the circle to intersect the origin and by choosing clockwise as the direction of
decreasing frequency. The diameter of the circle corresponds to the amplitude on
resonance.

In order extract physical information, the electronic signal must be interpreted as
the wave amplitude. Frequency shifts of an LCR oscillator measure the change in
capacitance at the pickup plate. Consequently, we need to know both how the wave
amplitude affects the oscillator frequency and how the electronics respond to frequency

shifts. The former is called the sensitivity and the latter is the PLLCAL.

_ (signal voltage)
T PLLCAL - sensitivity

(3.2)

Experimentally, the sensitivity is 115.5 Hz/nm and the PLLCAL is 250 um/Hz. The
value for M, , is calibrated to the amplitude of the Bessel function in the equations of
motion: equations (1.8), (1.9} and (1.10). For a rigorous derivation, the reader is

directed to Hai Luo’s thesis.

3.2 Qualitative Features

In the model, the initial conditions and the drive configuration wholly determine
the shape of the resonance. Experimentally measurable parameters include the film
thickness, the initial frequency splitting, the temperature and the drive voltage. Qur
data compares 6 different temperature (.4 K, .5 K and .6 K) and drive voltage (16.5 V

and 33.2 V) combinations for the up-shifted (2,1) rotating wave at a film thickness of
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2.6 nanometers and at an initial frequency splitting of L0053 +/- .0003. In order to
evaluate the model, we compare the effects of these parameters to both the data and
the model. Toward this end, we may pictorially deconstruct the resonance by focusing
on certain features. Three key features include the low amplitude region, the height of

the “knee” and the location of the “hook” (see figure 3.2).

Amplitude

Deceleration

W E;.__,.-—-" "“A-___H.:: Kn ce

Acceleration

Low
Amplitude
Region

Freguency

Figure 3.2. Qualitative features of the actual data.

For low to moderate amplitudes, the resonance is well described by the linearized
equations of motion and the B-shift. At moderate to high amplitudes, the resonance is
characterized by sudden exponential activation of vortices. The deceleration and
acceleration tegions begin at the “knee” and the “hook”, respectively. The data
demonstrates a consistent relationship between the initial conditions and these three
features, a connection that the model supports.

The height of the “knee”, corresponds to a threshold, the minimum wave
amplitude and wave velocity necessary to activate vortices. At the “knee” or “hook”,
the wave and vortex interaction either drives down or drives up the circulation. The

below figures illustrate the temperature dependence of the data and the model.
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Figure 3.3. The data and model for the 16.5 V drive.
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Figure 3.4. The data and model for the 33.2 V drive.

The amplitude is scaled to the film thickness and the frequency is scaled to the quality

factor and the initial frequency splitting.

amplitude = T

Af (3.3, 3.4

center

scaled frequency = ()
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In figures 3.3 and 3.4, the heights of both the “knee” and the “hook” decrease with
increasing temperature. In addition, the “hook” occurs sooner at the lower
temperatures and at the bigger drive. This temperature dependence supports the
thermal activation model. As the temperature increases, swirling occurs both at smaller
circulations and for smaller waves.

The drive voltage effect on the resonance is less intuitive, Big drives are more
efficient at driving up the circulation and small drives are more efficient at driving

down the circulation.

Amplitude
332V o

16.5V

04 F 004
002 + 002
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Figure 3.5. The dara and model at 4 K.
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Figure 3.6, The data and model at .5 K.
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Figure 3.7. The data and model at .6 K.

[n the model, large drive amplitudes propel the resonance toward the high amplitude
acceleration region faster than small drive amplitudes. A comparison among figures
3.3, 3.4, 3.5, 3.6 and 3.7 indicates that the model matches the general temperature and
drive dependence of the data.

Although the model supports the general trends, there are small quantitative
discrepancies. These discrepancies include the height of the “knee”, location of the

“hook” and the slope of the deceleration region.
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Figure 3.10. 4 Kand 16.5 V combination data and model.
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Figure 3.11. 4 Kand 33.2 V combination data and model.
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Figure 3.12. .5 Kand 16.5 V combination data and model.
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Figure 3.13. .5 Kand 33.2V combination data and model.
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Figure 3.14. .6 K and 16.5 V combination data and model.
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Figure 3.15. .6 Kand 33.2 V combination data and model.

In the above plots, the location of the “hook” relative to the model is variable at the
higher drive. The fitting routine tends to home in on either the high or low drive data.
For the sake of consistency, we arbitrarily give preference to the low drive fit
parameters. In the lab, the location of the “hook” is not exactly repeatable. The
location may be influenced by the qualitly factor, a value that varies by as much as 20%
trom one measurement to the next. On the other hand, the height of the “knee” and

the slope of the deceleration region is consistently reproducible. The model seems to
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give a bigger slope and higher “knee” than the data. Our model for the pinning energy

may be over simplified. An exact calculation for the energy levels may be necessary.

3.3 The Numbers

The numerical fits occur in two stages. First the data is truncated at the “knee”.
[n-this low amplitude region the background and phase are removed from the data
with the appropriate value for 1 and B. Secondly, the entire resonance is fit to the
thermal activation model. Experimentally measured parameters in include the Q and
the initial frequency splitting. Adjustable parameters include the characteristic pinning
strength (P), the over all scaling factor (Ry), the critical velocity (v.), the band choice and
the weighting factor (y,.,) that relates the frequency splitting to the circulation. The
band is chosen at the radial coordinate for which the azmuthal wave velocity is a
maximum. Here, 1p is about three quarters the cell radius. The fit is performed
simultaneously for all 6 sets of data. Only 1y, B and ¥,,, are allowed to vary among
different data sets.

Remarkably, the Q is constant throughout the resonance. Regardless of
nonlinear effects and switling, the resonance lies on a circle. 1, is the diameter of this

circle. [t scales with the square root: of the ratio of drive voltages.

73
To g = (const) |- (3.5)

low

The value for B depends upon the initial frequency splitting. The exact
relationship is unknown. At very high circulations, § can actually change sign. There
are lots of other scans that may quantify the dependence of B on the initial splitting.

An analysis could be a topic for future research.
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We can directly calculate the weighting factor v,,, from the splittings. However,
none are available at the relevent film thickness and temperatures. For this reason, we
allow this factor to float. When we change temperatures, the frequency splittings do
not change. Initially we did not feel a need to gather this information for every scan.
However, if we prepare the film at different temperatures the splittings are different.
The preparation involves reseting the circulation to a value close to .005.

The swirling parameters, P, R, and v,, are not independent. Two parameters

uniquely determine the other (see Appendix B).

R pmsination = 11 (JEERO)_ _‘]'3”7 Y oritical (3.6)

boltzman

In the numerical analysis, the actual adjustable parameters include a combination
scaling factor (R) and the pinning strength (P). A determination of Ry and v,
require at least two sets of data at different temperatures. The model is weakly sensitive
to the characteristic pinning strength. The value is on the order of 50 Kelvin. The
over all scaling factor (Ry) is not numerically important. Buried within the factor are
several constants of proportionality including a coefficient of friction, a degeneracy
factor and so forth. The single most inportant numerical result is the critical velocity.
[t’s value is roughly 4.3 meters per second.

The numerical fits not only provide support for the thermal activation framework
but also provide an unbiased and unambiguous value for the critical velocity. Previous
measurements are based upon the exponential behavior of swirling as a function of the
flow. Generally, critical behavior is not well defined for exponential functions. In this
thesis, we define the critical velocity within the framework of the model. It is defined
as the minimum external flow necessary to depin a vortex in the absense of thermal

activation. Consequently, we are able objectively to compare the critical velocity
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among different data sets. The numerical fits to the data show that the critical velocity
is independent of the temperature and drive voltage. Further data is required to

ascertain the dependence on film thickness and wave mode.
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Conclusion

Vortex activation in superfluid films is a complex system and we have chosen a
relatively simple model. Regardless, the model matches the general temperature and
drive dependence of the data. Our belief in the model provides a basis for defining the
critical velocity, Qutside the model, the numerical value is not particularly important,
However, a comparison of the critical velocity among several sets of data as well as
extensions of the model to additional areas of interest will illuminate other
characteristics of the general system. These characteristics include the pinning
properties and the density of vortices. Further analysis requires additional data at

different film thickness and wave modes.




Appendix A
Derivation of the Equations of Motion

If we assume that the fluid is incompressible, the divergence of the fluid velocity must

be zero. In cylindrical coordinates, let's separate the parallel and perpendicular

components.

6-;26//-;//+6V2 =0 (A.l.l)
Oz

Typically, our film thickness is millions of times smaller than the cell diameter.

Consequently, our film is essentially two-dimensional. We can average over the film

thickness.

6#-<?M>+MEO (A.1.2)

0

The triangular brackets indicate an integral over the film thickness.

1 "oy
_ Loy Al
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The boundary conditions require that the vertical component of the velocity is zero ar
the substrate surface. In addition, the vertical component of the velocity at the top is

the height osciilation.
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The combination of these equations gives the first equation of motion.

Z—f —h Vs -(%} (A.1.5)

This equation states that the height oscillations are due only to motion parallel to the
substrate surface. If the wavelength is much greater than the film thickness, then there
is a negligible vertical acceleration. Changes in the fluid thickness are a consequence of
incompressibility.

The second equation of motion is a linearized form of Euier’s equation,
analogous to Newton's second law. Without viscosity, the acceleration depends only

upon the pressure gradient and the van der Waals {orce.
——=-—VP-zig (A.1.6)

As before, let’s separate the parallel and perpendicular components and then take the

average over the film thickness.
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For an incompressible fluid, the pressure is given by:
P=P(r,¢)— pgh (A.1.8)

where, P, is the pressure at the surface. Since our experiment runs in a high vacuum,

the pressure must be zero at the fluid surface.

R, ¢)- pgn+h)=0 (A.1.9)

The second equation of motion reduces to:

av)
——t =—gVp (A.1.10}

Relations (A.1.5) and (A.1.10) are the linearized equations of motion.




Appendix B
The Explicit Model

In the original equations of motion let’s introduce a periodic driving force and a
damping term. The driving force comes from the electrostatic interaction of the
capacitor plates and the fluid. For oscillatory motion, a superfluid exhibits energy

dissipation. This dissipation is modeled as a simple term, linear in the velocity.

;« r,V¢)> :—gﬁn_y«v“%)) Ry

'%? = _haﬁ' ((vnvzﬁ))

For plane solutions, these equations become a simple matter of linear algebra.
igh —io+y)\m _(f
—iw ikh, v 0

If we solve for the steady-state amplitude, we arrive at relationship similar to a mass on

a spring.

3 ikh, 1,
w® — ghk® —iyw

The resonant frequency and the amplitude on resonance determined by patterning the

above relationship along the same lines as that of the simple harmonic oscillator.
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In this form, the steady-state amplitude is identical to that of the mass orra spring.

Near resonance, the drive frequency divided by the resonant frequency is close

to 1. Let’s expand the denominator and keep only first order terms.

n__ i - i
nresormnr ZQ[I _ EJ +l ZQ( .f;'esanant - f} +l
a)() j::'enter

For the simple harmonic oscillator, the resonance frequency is constant. In our system,

this frequency is modified by nonlinearity of the wave and a Doppler effect. Taken

together, the resulting equation is given by:

2
Vbackeround (r 0 ) n
f;'esonant = .fcenter li ym‘n w - ﬁ "

To simplify matters, let’s define several new variables.

Gy

Viuckgrouna(Fo)
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The swirl frequency is the low amplitude resonant frequency that we physically measure
in the lab. The scaled frequencies are given by:

X:Qfdn'v ﬁfmﬂ

f‘center

2
Xr - Q .](resmj;;:xt - fswiri — _B[ﬂ__]
cenfer

Here, the product of § and Q is defined a B. The resonant frequency may be solved

for as the solution to the cubic.

2
X r(=2X)X,? +E;~X—Xr +B=0

This equation is the combination of the steadystate amplitude and the frequency

shifts. The resonance may now be written in its most useful and final form.

n 1
22X (r)-X) i

nresanant

The next section deals with the acceleration of the background circulation.

This calculation requires an integral that cannot be computed in closed form.

i (I Voup exfluid "'vcn'rz'cal )
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Numerical integration techniques are too slow and a gaussian approximation has been

made. The wave velocity is be expanded to second order. Thereby, the integral may be

solved analytically.

a(n,,v,) =
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The most important relationship is given by the following.
R = lﬂ(u 2ﬁ'.‘RO )_ £ vcn'tz'ca!

R and € are two of the fit parameters. The critical velocity is calculated as the slope.
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