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Abstract:

This thesis seeks to help explain dissipation observed in
third sound Superfluid “He by the Quantum Fluids Group at
Wesleyan. Turbulence is a common hypothesis for these types of
dissipation; however, it is not well understood how vortices form
and nucleate in Superfluid. This project examines possible vortex
formation conditions around surface defects: obstructions and
bumps. We have solved for the flow fields of vortex pairs around
defects, found the energy costs to vortex pair nucleation around
these defects, and shown that energy cost for pair nucleation is
lower for larger defects in higher velocities. Along with microscopic
measurements of superfluid resonator surface defects, this model
should be able to confirm whether or not observed dissipation is

resulting from vortex pair formation around surface defects.
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Chapter 1: Background

Superfluid Structure

When “He is cooled beneath the A point of 2.17 K, it enters into the Helium
IT superfluid state. In this superfluid state, all of the Helium atoms, which
are bosons, enter into an identical quantum ground state, or thermodynamic
quasi-ground state. Above absolute zero, however, there will be thermal
fluctuations superimposed on this ground state behavior. The total super-
fluid wavefunction can be separated into the superfluid quasi-ground state

and a thermal excitation component:

‘I’=‘Po+§¢n (1)

Where ¥ is the quasi-ground state, and each ¢, is a thermal excitation. The
quasi-ground state need not actually be the single lowest energy state possi-
ble for the system; it just refers to a single Hamiltonian eigenstate that will

not change from thermal fluctuations on a relevant time scale.

Landau modeled this as a two fluid system - a system consisting of the
quantum superfluid component as well as a normal fluid composed of

thermal excitations. [A.]
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Figure 1.1: Temperature dependence of the superfluid and normal compo-
nents of Helium II. p; is the density of the superfluid component, p, is the

density of the normal fluid component [A.]

For this project, we are interested in examining the behavior of Helium II

in the low temperature limit; that is to say, i&z 1. Under such conditions, T

~ (0 K. This corresponds to a temperature region past the far left side of
Figure 1.1. We will not be investigating thermal excitations, only quantum
mechanical structures that appear in the wavefunctions of all particles in
the superfluid. In this limit, all particles will have their position-probability

distributed equally throughout the fluid. Figure 1.2 shows the constant
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value of | ¥ |? throughout the fluid.

Wavefunction of a particle in a generic superfluid

Figure 1.2: Each particle is distributed equally throughout the entire

superfluid

This ground state wavefunction can be written in a position basis as

¥o(®) = Vp €O (2)
Where p is the density and ®(7) is a quantum phase function.

Superfluids are incompressible, and as such, obey Laplace’s equation for a

flow phase ¢.

Vi =0 3)
Where the flow phase function is defined as the flow field’s gradient

Vy = v 4)

For superfluids, the quantum phase, @ is actually equal to the flow phase,
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. Because the particles are all aligned in the same quantum configuration
in the superfluid limit, there is no particle scattering, and therefore no vis-
cous drag. However, in any real situation, there will be thermal fluctua-

tions, and dissipation will occur.

The Quantum Fluids Group at Wesleyan has performed an experiment in
which a superfluid film is driven to resonate in a third sound wave motion
(essentially a sloshing back and forth in which the horizontal motion domi-
nates and any vertical motion is negligible). [B., C., G., and H.] The driving
would be turned off, and the decaying amplitude of the wave motion mea-
sured over time. If the decay were only from thermal fluctuations, we
would observe an exponential amplitude decay, such as was observed in
the cavity resonance chamber discussed in the Honor's Thesis of Swami-
nathan '09. On a log scale, these amplitude decays correspond to a straight

line, as seen in Figure 1.3.
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Figure 1.3: Third sound flow amplitude displaying exponential decay consis:

tent with thermal fluctuations [B.]
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However, Swaminathan also found many decays that displayed more anoma:

lous behavior. Both “kink” and “bulge” functional patterns (as shown in

Figure 1.4) were observed, in which the rate of decay was dependent on the

amplitude of flow. This would suggest a mechanism beyond simple thermal

fluctuations.
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Figure 1.4: “bulge” dissipation behavior (above) and “kink” dissipation

behavior (below) [B.]

One of the other possible causes of dissipation, in addition to thermal fluctu-
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ations, is the presence of superfluid quantum vortices. These behave
exactly like normal fluid vortices, except for the fact that they can only

exist on specific quantized levels.

A quantum vortex can be viewed as a quantized circular flow with closed
streamlines around a vortex core. Each vortex is characterized by a circula-

tion strength, K, defined as
— h
Kzggi‘/-dlzn— (5)
my

Where 7 is Planck’s constant, m4 is the mass of a single “He atom, and n
represents the quantization level of the vortex. In a two-dimensional film,

the velocity is given by

—

N o,
v=n——2¢ =Vy¢Y (6)
mqyr
Where r is the radial distance from the vortex core line, and ¢ represents
the azimuthal direction (with the right hand rule). The flow phase function
¥, which also corresponds to the quantum phase function, can be found by

solving Laplace’s equation for the appropriate velocity gradient.

7

w(ﬂ:wmfva 7)

Ro
Where Ry is an arbitrarily defined reference point, and ¥ is an arbitrary
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constant. For a vortex on a 2D surface, we can define ¢y = 0 along a line of

azimuthal angle O relative to the vortex core, and integrate in an arc around

the core to get the phase (since the vortex’s velocity will always be in the ¢

direction).
i) = fv-a=n—¢ ®)

We will consider only vortices of the n = 1 case, as vortices with n’>1 tend
to quickly decay into n’ vortices at the energy level n=1. As we shall see, 2
n=1 vortices actually carry less energy together than 1 n=2 vortex, due to

the quadratic relation between velocity and energy.

Energy of a fluid film is calculated via the equation

= lf‘,de = 'O—hfvsz 9)
2 2

Because of the first order reciprocal relation between vortex velocity and
radius, an energy integral over all space for a single vortex does not con-
verge. Therefore, we expect vortices to form in pairs of opposite circula-
tion, so that their kinetic energy will come from a dipole flow nearby, but

will cancel in the far flow limit.

Due to Bernoulli effects, vortices experience a Magnus force in the pres-
ence of a background flow. The vortex flow will create regions of high

velocity where the vortex flow matches the direction of the background
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flow, and by Bernoulli’s Principle, these high velocity regions will have

low pressure that drags the vortex in that direction.

superflmd background

Figure 1.5: Magnus force effects on the vortex core.

This Magnus force can be calculated by the following equation:

N

F Magnus = pKh (vvonex - T}background ﬂow)xk (10)

The Magnus force will drag vortices apart if they are in the proper align-
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ment - in figure 1.5, this would correspond to a positively quantized vortex
(as shown) on the right and a negatively quantized vortex (not shown) on

the left, by the right hand rule. Vortices are attracted together by a dipole

attraction proportional to r% due to each vortex experiencing a Magnus

force from the flow field of the other vortex. The pair will annihilate if their
attraction is strong and they come together. However, at some point the
background flow Magnus force overpowers the dipole attraction, and the
vortices will continue to separate on their own, in a process known as nucle-
ation. Examining conditions for nucleation will be an important part of this

project.

Whereas vortices in normal fluid form gradually, with smaller eddies flow-
ing back on themselves and creating larger eddies, quantum vortices in
superfluid must instantaneously transition from an n = 0 state (no vortex) to
an n = 1 state (fully formed vortex). Therefore, it is of great interest what
types of conditions will lead to vortex pair formation in the superfluid. The
results of the Quantum Fluids Group show that there was much higher
dissipation from the Stimulated Condensation resonator (which has a visi-
bly rough outer surface, indicating defects on the substrate) than there was
from the cavity resonator, which had smooth epoxy walls on the correspond-
ing surface. Some examples of surface defects on metallic substrates are

shown in Figure 1.6.
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- K7 g

Figure 1.6: examples of surface defects on a metallic substrate. Silicon

Dioxide (above) [D.] and evaporated Mercury on Gold [E.] (below)

With this project, we seek to determine what types of surface defects on the

substrate could be conducive towards vortex formation. We will examine
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the cases of a spherically symmetric bump and a complete obstruction to

flow.
Image Solutions

The flow phase function given by (8) satisfies Laplace’s equation and

completely describes the flow from a vortex on an infinite 2-dimensional
film. However, to model vortex flow around surface defects or constric-
tions to flow, we will need to be a little more creative in our solution to

satisfy both Laplace’s equation and Neumann boundary conditions
(conditions on ¥ ). Fortunately, we can use the uniqueness theorem for

Laplace’s equation, which says that if we know ¥ s on all the boundaries of
a surface, any solution ¢ that satisfies the boundary conditions and
Laplace’s equation will be correct and will have a unique gradient. There-
fore, if we concoct specific ¢ solutions that satisfy the conditions on its

gradient, we will correctly define the unique flow field.

The method that we use to concoct these potential functions is the method
of images. That is to say, we construct our solution to Laplace’s equation
by attempting to satisfy boundary conditions through the inclusion of ficti-
tious vortices that exist in nonreal space. This is analogous to solving for
electromagnetic potential through the use of image charges. Virtual vortex
images need not be quantized, they can have any circulation strength that

will appropriately match boundary conditions.
We can look at a simple example to demonstrate how this works. Imagine a
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vortex core at some arbitrary position within a cylinder containing a super-

fluid film.

image
I
2
=t
u

Figure 1.7: A vortex and it’s image. The arrows represent an integration

path for equation (14).

The boundary condition here is that there must be no flow through the

boundary:

B (11)
Vi ey -7 =0

The flow phase for an isolated vortex, as given by (8), would not satisfy
this boundary condition. As such, we construct an image vortex outside of
the cylinder to cancel radial flow at the boundary. Taking advantage of

complex analysis, we can write our phase function in a different way that
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will work out easier than the azimuthal function defined by (8).

U(x,y) = Re(-lz* i*ln(%)) (12)
0
Where
zZ=x+1y (13)

and q is the vortex core radius. This form of ¢ will give us the same gradi-
ent function as (8), so we know that it must be correct by the Uniqueness

Theorem. We then add the image vortex of opposite circulation at x = ’;—2

(such that the geometric mean of the two vortex radii will be the radius of
the cylinder) to cancel radial flow around the boundary. The vortex along

with its image is shown in Figure 1.7. The full phase function is:

b2
_ Rel —iw K 322 _ ST
U(z) = Re[ I 2ﬂ[ln( 0 ) ln( e ]]]

This phase function actually fulfills Laplace’s equation and the Neumann

boundary condition at the edge of the cylinder, and we are done solving for

the flow field.

To calculate the energy of this vortex configuration, we can make use of
Green’s first identity to turn (9), a 3-dimensional mass-element integral
which had been simplified into a 2 dimensional surface integral, into a 1-

dimensional path integral. Green’s first identity states for any volume inte-
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gral with a differentiable ¢ of the following form,

fv(lﬁ V2 + W¢)2 dv = S&p(v W -n)dS

Noting that V2i = 0, the volume integral can be reduced to a path integral
around the boundary of the enclosed volume, with 7 pointing outward from

the enclosed volume. Our energy integral reduces to

= %h 9§¢(V W-n)dS (14)

We want our path to go all the way around the boundary of the cylinder,
with a match cut into the fluid to exclude the interior of the vortex core,
which has a singular flow. This path is shown in Figure 1.7. The path
around the edge of the cylinder will give a result of O due to the satisfied
boundary condition that no flow be directed out of the cylindrical bounding
surface. The path around the vortex core will also give 0, because we treat
the core as a streamline. The only path that will give a contribution will be
the match cut in and out between the vortex and the cylinder boundary. The
velocities will be the same on the outward and inward path, and the phase
of the image vortex will also be the same on the outward and inward path.
The only contribution to the integral that will be different between them is

the phase function of the real vortex - it will differ by the azimuthal angle

of 2 accumulated by circulating around the vortex. Y eal vortex= f on the

=K

inward path and Yreal voriex = =

on the outward path. The velocity, found
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from taking the gradient of our total ¢ function, will be

3 _ T K 1 1
(-

X—u -z

The energy is then found by the following integral

X——
u

_n, 1 b K (=K (_L _ _1
E_2*2phL+a02 (27r (x—u bz))dx
Which evaluates to approximately

B gy (1 - )
This approximate result holds for the situation that b — (u + ag) >> agp, so
that the kinetic energy of the fluid far from the singular vortex core domi-
nates. We have defined the vortex core as being in the middle of the stream-
line; however, this is an approximation. When the vortex comes close to
the boundary, the core may actually move off-center from the circular
streamlines, but we choose not to consider these effects, which should be

negligible so long as the vortex core is far from the boundary.

This example was done for a very simple case. We will now use these
techniques to solve for vortex phase functions and energy integrals in more
complicated, more realistic flow situations. While this single vortex inside
the cylindrical shell does have a finite energy, a single vortex’s kinetic
energy goes infinite on an infinite flat plane of fluid. Therefore, single

vortices are not likely to form by themselves on a real, semi-infinite flat
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surface, so we will attempt to analyze vortex pairs instead.

Chapter 2: Obstruction to flow

Image Solutions

A complete obstruction to flow is actually a fairly simple case for finding a
vortex solution to Laplace’s equation. We have the same boundary condi-
tion (11) as we had for the case of the vortex in the cylinder - that radial
flow through the obstruction boundary must be 0. The solution to Laplace’s
equation corresponding to a background flow diverted around a cylindrical

obstruction is

b2
YBr(z) = VO(Z + _) (15)

Z

Where Vj is the background flow speed, b is the radius of the cylinder
(centered at the origin), and z is the complex position representation

defined by (13). The z term corresponds to the uniform background flow,
and the I’Z—z term corresponds to a diversion of flow around the boundary.

Figure 2.1 shows the flow field around the obstruction.
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Figure 2.1: Background flow field around a cylindrical obstruction

The vortex image solution follows almost exactly from the analysis of the
1solated vortex in the cylinder - except this time, we place the virtual image
vortex inside the cylinder, with our real vortex outside of it - with the same
condition that the geometric mean of the two vortex radii be the radius of

the obstruction.

b2

— 7z — =
wvonex(Z) = Re|i=* LS ]1'1(Z u) — In| —%
2n ap ap

Figure 2.2 shows the flow field from the vortex with its image in the

absence of any background flow.
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Figure 2.2: Vortex flow field around an obstruction with an appropriate

image vortex inside.

With this mathematical framework, we want to figure out the energy differ-
ence between a static background flow versus a vortex pair in the back-

ground flow.

Calculating Energy

We consider a vortex pair arranged such that the Magnus force will pull
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them apart - for a background flow in the positive x-direction, this corre-
sponds to a negative vortex in the first quadrant and a positive vortex in the
fourth quadrant. Using Green’s first identity, we can use equation (14) to
calculate energy as a line integral around the entire fluid. We will need to
include all fluid out to infinity, but exclude the obstruction (which has no
physical flow) and the vortex cores (which have a singular flow). This line

integral can expressed as 4 separate paths, as shown on Figure 2.3:

(1): The circular path at r = co

(2): The circular path at r = b (around the obstruction)

(3): The circular path around the top vortex core

(4): The circular path around the bottom vortex core

(5): The vertical branch cut going to the top vortex

(6): The vertical branch cut going to the bottom vortex

(7): The horizontal branch cut between (1) and (2)
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Figure 2.3: The dashed lines represent the path of integration. The “+* and

symbols refer to positively and negatively quantized vortices,

respectively.

Paths (3) and (4) follow streamlines of the enclosed vortex, giving no contri-

bution to the 7 direction of velocity. The change in ¢ and ﬁa,b from the

background flow and other vortices on this length scale is negligible, and
these integrals will be approximately 0. Path (7) will always be 0, because
the 72 component (pointing perpendicular to the background flow) of the

two vortex flows perfectly cancel along that line, spaced evenly between
them. Path (2) will also always be 0, because 7 points radially towards the
obstruction, and we cannot have radial flow through the boundary of the

obstruction. Paths (5) and (6) will each give the same result, by symmetry.

Path (1) will give us an infinite energy from the background flow, so we
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want to calculate the energy difference between a configuration with a
single pair of vortices, as shown in Figure 2.3, and a configuration with no
vortices. For the configuration with no vortices, we no longer need to inte-
grate along branch cuts to exclude vortex cores, but we will still need paths
(1), (2), and (7), although (2) and (7) both evaluate to 0. Our total energy

difference will be

AE IEV1+EV2+EV3+ EV4+EV5+EV6 +EV7—E1—E2—E7

Where each E,; represents the energy along path 1 with vortices, and each
E; represents the energy from path i with no vortices. Along path (1), the
dipole vortex flow goes to 0, so the background flow will dominate and the
integral will give the same result with and without vortices. Eliminating

terms that cancel or evaluate to 0, we can calculate energy with

AE = 2E,s (16)

Path (5) has two parts: the path in, and the path back out. These two will
have the same velocity and phase values, except that the phase of the encir-
cled vortex changes by 27 between the paths going in and out. Summing
together the background flow and individual vortex contributions, the flow

phase is

Z 27

2
Y(z) = Re{Vo(Z + b—) +1i K In

@-2)(c-£) ]] .
)

-2z (z- o
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Where z, is the position of one of the real vortices, and z,* is its complex
conjugate, the position of the other real vortex. Letting (x,, y,) = (Re(z,),

Im(z,)) and plugging this into (14), we evaluate the integral

YW—ao 0
f w(ﬁ w-ﬁ)ds - f(¢+ 2 7) (V wa)as
0 Y—ao

Which simplifies to

S

This integral has an analytic result; the energy difference is therefore

% 1n((a0 \/(b4 +2 bz(—xv2 + yvz) + (xv2 + yvz)z))/ (18)

(2302 432 + y;))))

Furthermore, we can scale our length and time units to massage this for-

mula into a simpler form. Bearing in mind that ay ~ 1.3 % 1071%m, let

LT
r'=—

ap
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. K
t=—t
Cl()2
From this rescaling, it follows:
ao
Vo' = — Vo
K
b
b'= —
ao
1 v
X, = —
ao
| Yy
W =
ao

This scales V) to the maximal fluid speed of the vortex near the core, which

is also the speed of sound in liquid * He for a Mach number 1 system [F.]

This gives us
AE = thZ(—VO'( y + &V'Q)—
i In(y/ (5% + 262 (=52 + 3,2) + (62 + 0, 2))) / (19)
(23 (<52 42,2+ yva))))
We can also scale energy to Boltzmann’s constant, which will give us
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energy values in physically meaningful Kelvin units.

AE b2y,
— =E'= To(—Vo'(yv'+ —y)_
KB xv'2 +yv'2

L In((/ (6 + 262 (=22 + 3,2) + (62 + 0, 2))) / (20)

21

(2 (-2 52 3.2))

2 . .
Where Ty = J;(LK, which we can calculate numerically:
B

kg
3

p = 145

h=3%«10"m

K = n ~1%1077
niy

TQ ~ 313K

Equation (20) will have reflectional symmetry about the y-axis for x,, as
can be seen by x, appearing only in even powers in the argument of the

natural log. This reflectional symmetry can also be deduced from the fact
that the integral along path (5) depends only on a difference in flow phase
based on integrating around the vortex core (which can be taken as a con-

stant outside the integral) and the flow phase gradient in the integrand.
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Energy Landscapes

Using our analytic expression for energy, we can plot it as a function of

vortex position. For Vy = .1 % and b = 100nm, a vortex pair moving away

from the obstruction will move through the energy path shown in Figure

24.

Energy of a vortex pair moving along the y—axis
el e e e e e e S

300 - B
280 - B

260 - B

energy (in Kelvin)

240 - R

220 -

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1000 2000 3000 4000

y position (in core sizes)

Figure 2.4: Energy path of a vortex pair separating along the y-axis.

The vortex pair moves to a higher energy configuration as it pulls away

from the vortices’ mutual dipole attraction, but after a certain energy bar-
rier point, the energy starts to decrease in accordance with the background
flow Magnus force winning out over the dipole attraction and working to

pull the vortices apart.

We can make contour plots in which each point corresponds to the energy
difference with a negative vortex on that point, and a corresponding posi-
tive vortex at a point reflected about the x-axis. For an obstruction of radius

100nm, we can look at the energy structure for different values of V(. The
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energy contour plots are shown in Figure 2.5, with the negative vortex
positions plotted in the first quadrant. The second quadrant, corresponding
to the vortex pair on the left side of the obstruction, will look exactly the
same as the first quadrant mirrored about the y-axis. The third and fourth
quadrants represent a vortex configuration in which the background Mag-
nus force actually pushes the vortices together, and will not provide condi-

tions favorable for nucleation.
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Figure 2.5: Contour plots of energy difference produced by a vortex pair.

All energy units are in Kelvin, and all distance measurements are in units
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of vortex core sizes.

Each plot has an appropriate range to observe the energy barrier above the
obstruction. From these plots, two conclusions are immediately apparent:
the energy barrier moves further away from the obstruction as background

flow velocity goes down, and the energy barrier will have its lowest value
along the y-axis.
Energy Barrier Analysis

Because we can graphically tell that the energy barrier will be the lowest

along the y-axis, we can find the energy barrier by numerically finding the

maximum energy point along the y-axis vortex trajectory.
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Figure 2.6: Log-log-log contour plot of energy barrier position as a func-
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tion of scaled background flow velocity and obstruction size. b’ = ab—o and

Vo'=2 Vo

~E

Figure 2.6 shows that the energy barrier seems to be closer to the obstruc-
tion for higher velocities and smaller obstruction sizes. It appears to vary
linearly with both parameters. We can also contour plot the height of the

energy barrier:

Energy barrier height (K)
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Figure 2.7: Log-log plot of the energy barrier height as a function of obstruc:

tion size and background flow velocity with the same scaling.

Figure 2.7 shows that the energy barrier is smaller for higher velocities and
larger obstruction sizes. Therefore, a large velocity will create a closer,

smaller energy barrier than a small velocity. A large obstruction size will
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generate a smaller energy barrier, but the energy barrier position will be

further away than for a smaller obstruction.

Now that we know about the energy landscape for a vortex pair around a
cylindrical obstruction, we can compare it to the more realistic case of a
vortex pair generated around a spherical bump that the superfluid can flow

over.

Chapter 3: Spherical Bump
Film Thickness

We want to investigate flow and vortex behavior around and over spherical
bumps, structures similar to those shown in the lower image of Figure 1.6.
We consider a spherical bump characterized by a radial footprint a and a

polar angle 6, at which it meets the flat surface. This geometry is shown in
Figure 3.1. Before investigating flow over the bump, we need to determine

how the film thickness will change over the bump.

Figure 3.1: a spherical bump with radial footprint @ and polar angle 6,
determining how much of the sphere is above the surface of the otherwise

flat substrate.

We can calculate this roughly by equating the potential on the bump with
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the potential on the flat at the boundary. On the flat, the potential comes
from the Van der Waals interactions with the substrate, which acts like a
local gravity. On the bump, there is again Van der Waals acting as local
gravity attractor to the surface of the sphere, but there is also a surface
tension term. Setting these potentials equal, we arrive at the following

equation:

Uvpw(hy) = Uypw(hp) + Ust(hy)

Where hy is the film thickness on the flat, and £, is the thickness on the
bump. Plugging in expressions for Van der Waals and surface tension

potential, we get

- —« ymy
BP T (L e b SHAIY () 1)
1+ 5 S Al

p 1is the density of liquid helium (145 :—1%-), my 1s the mass of the helium

nucleus, (6.646:x10-%7 kg), a is the Van der Waals constant
(2.19865 % 1070 Jm), and vy is the surface tension constant (3.7 %1074 ﬁ)

By multiplying both sides of equation (21) by all of its denominators, we
get a 7th degree polynomial of 4, with no analytic solutions. However, we
can numerically fin