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Abstract

Fuel tanks filled with organic aerogel might increase the safety level of hy-
drogen storage for hydrogen combustion vehicles. Aerogel, a material with high
porosity and good thermal insulation, readily adsorbs liquid and might prevent
a rapid change in temperature and catastrophic release of fuel in the event of an
accident. This project modeled how chunks of aerogel retained liquids in a burn-
ing environment and built a simulation model to match the experimental data
for methane. The model was a sphere of organic aerogel initially saturated with
liquid methane and held at a fixed high temperature on the surface. The model
simulated the heat conducting into the aerogel sphere, evaporating liquid methane
and hence increasing pressure. At the same time gas particles diffused out due to
the pressure gradient. The liquid weight as a function of time is compared with
the experiments. The simulation has allowed us to obtain a characteristic time
scale that would apply not only to methane but also other gases. The result would

help us evaluate the feasibility of aerogel filled hydrogen fuel tanks.
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Chapter 1

Introduction

1.1 Hydrogen Fuel and Aerogel

Hydrogen is seen as a major energy carrier for the future. It is a clean source
of power which creates only water after combustion. Hydrogen can be stored in
gaseous forms, in liquid forms, in metal hydride or in porous systems. The latter
two are safer but the technologies are not as mature. Since hydrogen is gaseous
under ambient conditions, how to pack sufficient amount of hydrogen becomes a
problem. Compression and liquefaction help improve the amount stored in a fixed
volume. However, more important than sufficient storage is the safety of storage
because hydrogen is explosive. This project studies the safety of liquid hydrogen

stored in aerogel.

Aerogel is a synthetic material first created in 1931. Samuel S. Kister of
Stanford University found a way to dry gelatinous substances without collapsing

the structure [2]. Hence aerogel is a porous material of which as much as 99.8
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percent of the volume is empty space. Aerogel can be made of inorganic or organic
material such as silica, aluminum oxide or carbon. The aerogel chunks studied in

this project are made of phenol-furfural and are black [3].

Aerogel has several applications. NASA used silica aerogel to collect star-
dust. Since the structure of aerogel provides the best cushion, aerogel can slow
down the stardust without destroying the particles. In addition, silica aerogel
is transparent and it helps to find the stardust particles. Aerogel has a large
surface area and can serve as catalysts. Moreover, Aerogel’s low thermal con-
ductivity leads to the invention of aerogel container, which insulates heat better
than Styrofoam containers. This project investigates applying the properties of
aerogel, nanometer-sized pores of aerogel and low thermal conductivity, to make

safer liquid hydrogen storage devices.

1.2 Summary of Work

This thesis is divided into four big chapters, the mechanism of fluid desrop-
tion in porous media under a temperature and a pressure gradient, the compu-
tational simulations, experiments, and simulation and experiment comparison.
Instead of hydrogen, this project works with liquid methane because it is readily
available and safer than hydrogen. If not specially indicated, all the constants are

constants of methane which are listed in Appendix A.

The two questions Chapter 2 answers are: how are particles stored in aerogel
and how do particles leave the aerogel. Given a specific temperature and pressure,
under equilibrium, the methane isotherm shows the amount of liquid stored in

aerogel. Diffusion and conduction are introduced to explain particle movement
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and temperature changes. The heat that conducts in evaporates liquid particles
and raise the pressure. Then particles diffuse out due to a pressure gradient.
The isotherm, diffusing equation, diffusing coefficient, conduction equation and

thermal conductivities are introduced and discussed in Chapter 2.

With the diffusion and conduction equations, the equations used to describe
the system are derived. A constant high temperature at the surface represents the
flame. The computational simulations are programmed in Mathcad. First a one
dimensional model is developed and then Moving Boundary Model is introduced.
Two analytically solvable problems are studied in Chapter 3 to gain more insight
of the system. Finally the three dimensional model is built and the results are

presented.

The simulation results are compared with the experimental results in Chap-
ter 4. The set up and the result of the experiment is presented. The effective
length of each sample is found to obtain the characteristic time. The relationship
between length and disorption time was derived in Chapter 3 and can be observed
in the experimental result. The simulation do not exactly matches with the ex-
perimental results. One possible explanation about the temperature distribution
on the surface of the sample is raised. Chapter 5 further studies the temperature

effects on the simulation model.

At the end the results have allowed us to obtain a characteristic time scale
that would apply not only to methane but also other gases. The result would help
us evaluate the feasibility of aerogel filled hydrogen fuel tanks.



Chapter 2

Theory

The theory chapter is divided into two sections. The first section discusses
how methane is stored in aerogel. The second section presents how methane
is driven out of aerogel. Diffusion equations describe how particles move and
conductions describe how heat flows. Two sets of equations are coupled together
and control the rate of methane leaving aerogel which will be further discussed in

Chapter Three.

2.1 Distribution of Liquid and Gas inside Aero-

gel - Isotherm

In this section, how the methane is stored in aerogel is studied. The pore
here is modeled as a hollow spheres as illustrated in Figure 2.1. A pore has pore
size a, and a layer of liquid methane with thickness d is adsorbed on the surface

of the pore. The thickness of the liquid is related with pressure. When a pore is
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a pore Aerogel

Figure 2.1: A pore in the aerogel. The pores in aerogel are modeled as hollow spheres
with radius a. The grey color represents the organic material surrounding the pore.
The pore has radius a and a layer of liquid with thickness d is adsorbed on the inner

surface of the pore.

filled with liquid the pressure is called the saturation pressure P,,;. The saturation
pressure depends on temperature and the following equation is fit to the data from

NIST. Figure 2.1 plots the saturation pressure as a function of time.

~1039.
Pout(T) = 1059.2 exp (w) MPa

When the pressure is lower than the saturation pressure, the chemical po-
tential helps with finding the thickness of the liquid layer. When equilibrium is
reached, the chemical potential is the same throughout the pores. Thus the gas

has chemical potential j4,s and it can be expressed as: [5].

P
Hgas = fto + kT In(—=—) o = saturated chemical potential (2.1)

Psat

The chemical potential of the liquid consists of two parts, one from the sur-

face tension and one from van der Waals attraction force. The pressure difference
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MPa 3 T T T T
- 103238
T
4 FPzat(T) = 10502 ¢ -
3_ —
Pressure
2_ —
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i | | | ]
100 120 140 160 1280

Temperature K

Figure 2.2: Methane’s saturation pressure v.s Temperature. The function is fit to the
saturation pressure data from NIST Chemistry WebBook. When the temperature is at
112.3 K the pressure is 0.1 MPa (1 atm).



Chapter 2. Theory 7

across a curvature is AP = _727, where 7 is the surface tension ( 0.01346 N/m

for methane), and R is the radius of the curvature. Thus the chemical potential

per liquid particle due to surface tension is written as Apu,. 23 is the volume each

. . . . 3 _
liquid particle occupies (27 = £).

27 2}
a—d

Apg =

The chemical potential contributed from the van der Waals attraction is
derived from the inter-particle force, or potential v = —¢ [6]. The van der Waals
force acting on one particle distance d away from the surface is found by integrat-

ing through the entire solid. The energy is:

4  a? 1
J— _ﬂ'a— - —
3 & (2a—4d)3
This expression is simplified by defining kT, the lowering energy by adsorbing
one particle onto a flat surface (¢« — o00). The van der Waals temperature T, is

about 1500 K.
4 1
D= es (o)
Then the chemical potential contributed from the van der Waals attraction is:
kT, 23 8a?
3 (2a—d)?

—kT,(

Ap, =

g and p = P];t. The the liquid particle

Define dimensionless quantity z =

has chemical potential:

kT, 2} 8 2 23
i = Il — . — 2.2
Hiig = Ho a3 B2-2P3 a(l-2) (22)

When it is in equilibrium, the chemical potential of the gas and the liquid
are equal. Thus the isotherm is found by equating 145 and pu;, and then solve

for the pressure.
Ta:8Tvzi)’ Tb:2fyzi”
ad ak
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(2.3)

T=123 K
a =100 nm

0.1

|m||1

n.01

0.4 0z

Figure 2.3: Isotherm for methane in aerogel with pore size a = 100 nm at 112.3 K.
The critical pressure is 0.997 when the red line curves back. For adsorption, when the
pressure is above the critical pressure, the tension in the liquid pulls liquid in and the
pore is saturated. Therefore, for p greater than 0.997, z equals to 1 as the dash line

indicates.

The isotherm (2.3) tells us how much liquid is stored in a single pore for a
given pressure and temperature. When the pore size is 100 nm and the tempera-
ture is at methane’s boiling temperature 112.3 K, the isotherm is plotted in Figure
2.1. For p smaller than 0.987, z is smaller 0.05 and for p greater than 0.987, z is
saturated to 1. This means that the pore is almost empty unless the pressure is

close to the saturation pressure. When the temperature is higher than the boiling
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temperature, the saturation pressure is a fast growing function. So it requires a
even higher pressure to fill up the pores. This result will be very important when

we are simplifying the simulation model.

2.2 Diffusion and Conduction

2.2.1 Diffusion Equations

Given a concentration difference, particles move from high to low concentra-
tion. Diffusion is a result of random motions of particles but under the hypothesis
that the rate of transfer is proportional to the concentration gradient measured,

the process can be described mathematically [7]. In one dimension:

on

on oJ

(2.4) and (2.5) are the equations for one dimensional model where J is the flux,
rate transfer per unit area. D is called the diffusion coefficient, n is the concen-
tration of diffusing substance, and x and ¢ are the spatial and time coordinates

respectively.

If the diffusion coefficient is uniform everywhere, then the equation becomes

on — D% to which n(z,t) = (Acos(kz) + B sin(kx))e"\2t is a solution [8].
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gas

Figure 2.4: A tube inside aerogel with pore size a; adsorbed liquid thickness z and

length L.

However, most of the time the diffusion coefficient is not a fixed constant. In
a long cylinder with radius r, assuming the flow is laminar, then Poiseuille’s law
(2.6) describes how fluid flows [9]. V is the volume flow rate and 7 is the viscosity

of the fluid. The diffusion coefficient can be derived from Poiseuille’s law.

. 4.9
y=""D Poiseuille’s Law (2.6)
8n Ox
In the following case, the number flow rate is derived for a cylinder with a
layer of liquid adsorbed on the wall (Figure 2.4). And the diffusion coefficient is

then defined.

Gas Diffusion Coefficient

: m(a — z)* dp o
Vias = ———"—=— = gas viscosit
g 8n, Oz Ng = gas v Yy
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From the ideal gas law:

Moas =37 = 4T
on _ondp _ 1 0p
or  Opdxr kT Ox

p
N=—
kTV
. p .
Ngas = k_T‘/;]aS
_ prla=2)0p
kKT 8n, Ox
_ pla—2)*on
B 8ny,  Ox

Flux J is N divided by the area ma? Thus

N  p(a—=z)'on
a2 8y, a® Oz

Jgas =

Compared with (2.4), the diffusion coefficient is

Dyas(p) = 3 = (2.7)

Liquid Diffusion Coefficient

The diffusion coefficient for liquid is a little bit more complicated. For
laminar flow, the velocity of fluid at the cylinder wall has zero speed. The flow
has greater velocity as it is further away from the cylinder wall. The viscosity
force is proportional to the velocity difference. The volume flow rate is calculated
by finding the speed at each place. The force created by viscosity between two

sheets of flow with area A in Figure 2.5 is

Vg — 11

F=nA Ar
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Plx]

| ) P — A I&r

L e— L

1

Figure 2.5: Two layers of liquid flow with velocity v; and vs. The layers have area
A had distance Ar in between. The figure on the right is an illustration of cylindrical

layers of flow.

0
F(r)= 7727T7“L8—y for the cylindrical model
r
Furthermore the total net force is zero. That is
dp
F(r4+0r)—F(r)+ PA=0  A=2qrdr P:d—L
T
0/ Ov\* op
2 L—( —> 2mr LEL — 0
™ or r@r 0 +enr ox
Solve for v then
v(r) = _—1@7“2 +colnr+ec
4 Ox ! 2

Plug in the boundary condition given by the aerogel tube, Figure 2.4

to find the constants ¢; and c,.

1 dp
= 2
“ 2n Ox

o= (g (5~ 3)

Therefore v becomes:

v(r) = %%(% + b ln(£)> (2.8)
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Integrate v(r) from b to a to get V

sz'qZ/ v(r)2mrdr (2.9)
b

With b = a — z and liquid viscosity 7;, the integral becomes
: T Op 4 a— z\2 a— z\* a—2z\*, [a—=z
Vig = —2L 1—4( ) 3( ) —4( )1 ( ) 2.10
a8, o5 ( a + a a A (2.10)

What is needed is the flux ( J = N yand N = %V for liquid. And again,

Ta

e O o On o On _ 1 0p
Changlng ox to ox by Oz ~ kT 0x>

Ty = 8’%@2(1_4(a;Z)2+3(G;Z)4_4(G;Z)ﬂn(a;2))3—2 (2.11)

we got

Dia= gt (1-1() +3 () -4 () w (1)) e

The diffusion coefficients of liquid and gas methane as a function of pressure
is shown in Figure 2.6. It is worthwhile mentioned that Dy;, depends on pressure

only because the thickness of the liquid layer is pressure dependent.

The total diffusion coefficient of particles is calculated from the sum of liquid
component and gas component. D = Dgy,s + Dj;, With the diffusion coefficient,
one can numerically simulate the diffusion rate. This will be further discussed in

Chapter 3.2.2.

2.2.2 Conduction Equations

Heat conduction is no different than particle diffusion [7]. It is described

by conduction equations which is similar to diffusion equations. Heat flux Jg
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Figure 2.6: Diffusion coefficients for liquid and gas methane in the aerogel tube.

is proportional to temperature gradients and the heat change rate is described

as:

oT

- K— 2.1
Jq e (2.13)
AQU_oT 0T
AV Por T Mo

c and p are heat capacity and density of the material. K is called the thermal

(2.14)

conductivity. The thermal conductivity is a function of temperature K (7). Figure
2.7 is the heat conductivity of methane. In the simulations, the value for heat

conductivities of methane are fit to the NIST data.

gas methane K,(T) =4.008-107%- 7152 4 0.00648 ~W/mK
liquid methane | K; =0.186 W/mK

aerogel K, =0.003 W/mK

Table 2.1: Thermal conductivity for methane gas, methane liquid and aerogel.
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K(t) = 400810 6[1;1 '552) rEAE X0
i I | | :
01 —
KM
005+ =
i | | |
0 200 400 600 200
T K

Figure 2.7: Thermal conductivity for methane gas at different temperature (pressure

equals to 1 atm). The function is fit to the data in NIST Chemistry WebBook.

Heat conducts in not only through methane (liquid and gas) but also through
aerogel. The following discusses how to describe heat flow through a combination
of aerogel and gas methane, K,® K,. Only K,® K, is discussed because from the
previous discussion in Chapter 2.1 we know the pores are either empty or totally
filled. We would also need the thermal conductivity of liquid methane plus aerogel
but not the three together. K; ® K, has the same formula as K, ® K, with K|

replaced by K.

Figure 2.8 illustrates how we simulate pores as cubes of size [? evenly spaced
and imbedded in aerogel chunks. Figure 2.8 C is the decomposition of the compo-
nents. First a space filled with gas is being parallel placed with a piece of aerogel.
The effective conductivity is K.; and then this piece is in series with the second

aerogel chunk with conductivity of the organic material K., = K,.

Effective conductivity of n pieces of material with area A;, As, As... A, and
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a
b w3
= E..' ~
| __empty volume
| organic
material
c r -
et Ko
e
Al
A2
i
L1 L2

Figure 2.8: The model for finding combined thermal conductivity. ( a ) is the 1-D
illustration of the model structure. ( b ) One basic unit has length [. The empty cubic
volume has length I’. ( ¢ ) Decompose the basic unit into two parts which have thermal
conductivity K.; and K.o. The length for the first part L1 is I’ and L2 is (I — I')The
area Alis [ — 12, A2 is I”?
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conductivity Ki, Ko, K3. .. K, parallel placed together is given by [7]:

Atotathotal = AlKl + AQKQ + A3K3 + ...+ AnKn parallel (215)

On the other hand if it is n pieces of materal with thickness Li, Lo, L3 ... L, in

series, the effective conductivity is

Ltotal Ll L2 L3 L" :
= —4+ =4+ —+ ...+ — series 2.16
Ktotal Kl KQ KS Kn ( )

Thus, (2.15) and (2.16) help us to find the effective conductivity as following:

l2_l/2 l/2

Ko = K0(1_2) + Ko
KeQ = Ko

v -

Keff T Ke Ke2
F=(%)7 filling fraction

\

Then the effective conductivity is

KelKeZ
Ke2f1/3 + Kel(l - f1/3)

Kopp = (2.17)

The last step here is to find K,, thermal conductivity of organic material,
from the thermal conductivity of aerogel. The conductivity of aerogel, K, =
0.003  W/mK, is measured in vacuum. In other words K, equals to K.r; when
pressure is zero (K, = 0) Plug in K, = 0 into (2.17) and solve for K,.

L+f-f"
1_f2/3

Finally we found the expression of the effective conductivity as a function of filling

K,=K,

fraction, conductivity of methane gas and conductivity of aerogel.

Kﬁ-(1+f—f2/3)2+Kg.Ka.f2/3.(1+f_f2/3)

Kepp =
ff K, - (1 + f - fz/s) 13 4 (1 — f1/3) (1 — f2/3) (Ka' (1 + f - f2/3) + K, - f2/3>
(2.18)
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I I I I
0.140 Kg(T =800 K)

0iF
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Ka_
Ka  gpst

Keff( T = 112 K)
0
1]
] 0.2 n4d 0.4 ne

Figure 2.9: Effective thermal conductivity Keff at different filling fraction f. One is
calculated at temperature 7' = 112K. The other is at 800 K. Ka is aerogel ther-
mal conductivity. Kg is the methane gas thermal conductivity, also at two different

temperatures, 112 K and 800 K.

Figure 2.9 is the plot of thermal conductivities of aerogel, methane gas and
the combination of the two. When the filling fraction is zero (that is no pores, no
empty spaces in aerogel), the effective conductivity is just that of aerogel. And
when the filling fraction is close to one, the effective conductivity becomes the

sum of the gas and aerogel conductivities.

Now we know the mathematical formulas to describe the particle diffusion
and heat conduction. The final piece before we can do the simulation is the heat
involved when liquid particles evaporate and become gas particles. That is the
latent heat L,

AQ = Ly - ANjig—gas = mcAT

Evaporated particles show up in both particle diffusion equation and heat con-
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duction equation. This is what makes particle diffusion and heat conduction
equations couple together and hard to solve analytically. If the diffusion coeffi-
cient and thermal conductivity are constants independent of concentration and

temperature, analytical solutions can be found [7].

Involving temperature dependent conductivity and pressure dependent dif-
fusion coefficient, the system in this thesis is more complicated. Furthermore the
system involves two sets of diffusion gas and liquid diffusion, which only make an-
alytical solutions infeasible. In the next chapter simulations methods and results

will be presented.



Chapter 3

Simulations

Chapter Three presents how to simulate the rate of methane loss in a spher-
ical piece of aerogel originally soaked with liquid methane at methane’s boiling
temperature with the outer surface exposed to a high temperature (800K). The
equations to describe the system are derived in 3.1. And then some simplification
is made: Each pore is either filled with only gas or only liquid. The gas diffusion
is the dominant diffusion process so the liquid diffusion process is neglected. Then
the mathematical discriptions and results of the simplified system are presented
in 3.2. Finally these results are compared to the experimental data in the next

chapter.

3.1 Simulations I - Equations

The goal of this section is to describe the system with equations. The key

concepts are the conservation of energy, conservation of particles and the isotherm.

20



Chapter 3. Simulations 21

aerogel

Figure 3.1: One dimensional model. Aerogel has length L, pore size a and the liquid

layer thickness isd.

Originally a spherical chunk of aerogel is saturated with liquid methane at 112 K,
the methane’s boiling temperature, T,. A constant high temperature (800 K) is
applied to the aerogel surface and represents the flame. The particles diffuse out
in gas and liquid form. In the mean time, liquid methane can evaporate or the gas
can condense depending on the heat available. There are three ways to change
the temperature. First, heat can conduct in through aerogel, gas and liquid to
raise the temperature. Second, temperature can change when the hot or cold
gas and liquid particles move. Finally, through evaporation or condensation, the
temperature also changes. The assumption made here is that local equilibrium is

achieved so the isotherm is always valid [10].

Now lets write the equations down for a one dimensional model (Figure
3.1). Let subscripts 4 4 ; and .., represents aerogel, gas, liquid and evaporated
particles. n is the number density. J and Jg are the particle flux and heat flux

respectively.
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Conservation of particle leads to:

ong 0Jy  ONeyap
_ 1
ot or ot (3.1)

8nl 0J, l 8newp

I .2
ot Ox ot (32)
Conservation of energy gives:
10Q oT 0 OMeva oT oT
Vot (PaCa+PlCl+PgCg§) = _%(JQa+JQl+JQQ>_LvTp_pgcgvg%_plclvl%
(3.3)

The latter two terms represent the heat flow caused by the cold or hot particle
diffusing to regions at a different temperature. v is the velocity of the particle can
be found from the flux relation J = nv Rewrite the density p to be mass times

number density then pcv2E becomes meJ 2L
oz ox

However, three equations are not sufficient to solve for four unknowns, n,,
Ny, Nepap and the temperature T. Thus, isotherm is employed in equilibrium con-
straint, which contributes two more equations. Isotherm is a function z(p,T)

which tells us the thickness of the liquid layer z at any pressure and tempera-

ture.
on on
dn, = (=2)d —2)dT A4
g (8z)z+(8T> (3)
8nl 8nl
= (— —)dT .
dny (az)dz+(aT)d (3.5)
Here the isotherm p(T, )/ Psqr = exp (T‘Z{(f_z)g — (f_z)) (ref eq) is derived

from the spherical model but is used on the cylindrical tube model which the
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diffusion constant is derived based on (Figure 3.1). ng, is the number density of

the gas particles in the cylindrical tube. From ideal gas law (N, = %) we know
ng = i fjple — pP S“ti’}(“*d)z 7 aiﬂple. Vsapmple €quals to Lra?/f for each tube and

let normalized thickness z be z = g. Call this number density function /, and it

becomes
p(Ta Z) : Psat(T)
(7,2) = B (3.6)
As for liquid, the number density N; is N; = ‘%p = %, 2= % the volume

N, 1, o1
I, = = —(L —L —d
: ‘/sample Zi%( T Tr(a ) )V:sample
1 1
= —(1—-(1-2)?)=—=(22z—2"
I(z) = —— (22 — 22) (3.7)
AT |

In (3.4) and (3.5) need %, %ng ,%,and %. Therefore, we take (3.6)
and (3.7) and find their partial differentiations, I,., Iy, I;., and ;7. Notice that

I is zero. The number density of liquid is independent of the temperature.

The way to solve or numerically simulate the system of equations (3.1) ~
(3.5) is to separate terms with dt to one side of the equation. Thus these equation

becomes
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(Iodz + IpdT — dny)/dt = 0
(dng - dnevap)/dt = _% — {;%(Dgas%)
(dnl + dnevap)/dt = —% — aﬁx (Dlzq%)
((PaCa + Pt + pycq)dT + Lydneyqp) /dt = _éu@z g+ ) — pacyvy®

dr
— PGV

= S KZL +mCyDye, T2 9L 4 mCy Dy 2L

Finally, turn these equations into a matrix and times the inverse matrix of
the coefficients on both sides. Then we have the information we need to find out
2, T, ng, ny and ne,qp With a proper time step dt. However, notice that /., I;. and
I, are functions of 7" and z which add to the complicity of the inverse matrix.
In the following ) pc and ) K represents p,c, + pici + pycy and K, & K; & K,
respectively. The @ is the thermal conductivity addition discussed in Chapter
2.2.2.

dz dz

I, Iy —1 0 0 dz 0
I, 0 0 -1 0 dT 0
_ dng
o 0 1 0 -1 dny, | = 4 (Dygas72)
o 0 o0 1 1 dn, 4 (Dyig %)
0 Spec 0 0 L, ANeyap S KEL 4m dT(c Dyas™a 4 Cy Dy @)
-1
dz I, Iy -1 0 0 0
dT I, 0 0 -1 0 0
_ dng
dn, = 0 0 1 0 -1 L (DygasT2)
dny o 0 0 1 1 A (Dyjg o)
dNevap 0 Ypc 0 0 L, S KEL 4 dT(C Dyas @i 4 Gy Dy %)

(3.8)

dt

dt
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The programming is done through Mathcad (Appendix D). The initial con-
dition is set to be the whole piece of aerogel saturated with liquid methane at
methane’s boiling temperature. It turned out the program ran slowly and failed
to converge when the temperature outside of the aerogel is hotter than 117 K (5K
more than the boiling temperature.) These studies helped us understand how the

system work but a less complex way to carry out the simulation is needed.

3.2 Simulations II - Moving boundary Model

The isotherm (Figure 2.1) implies that the pores in aerogel are almost empty
as long as the pressure is less than 98 % of the saturation pressure. This moti-
vates us to set up the moving boundary model (Figure 3.2). Moving boundary
models are generally applied to the cases which have discontinuous diffusion co-
efficients [7]. For example, in some cases the diffusion rate drops to zero when
reaching to some specific concentration. As the name suggests, the moving bound-
ary model has a boundary beyond which the aerogel is saturated with liquid and
before which no liquid exists. Only the gas particles diffuse and the source of gas

particles come from liquid evaporation at the boundary.

The system is simplified into two regions. In the gas region, the heat con-
ducts in and gas particles diffuse out. At the boundary, liquid particles evaporate
and the temperature adjusts according to the heat flux in and the latent heat
loss. The boundary recedes after liquid particles at the boundary all evaporate.
Finally in the liquid region, only the heat conducts in and no particle moves.
The liquid region is set to have uniform temperature. The pressure in the liquid

part is always maintained at the saturation pressure of the liquid temperature. In
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Figure 3.2: One aerogel tube in the moving boundary model.

other words if there is liquid then the pressure is always at the saturated pressure
Ps.:. Thus by using the boundary moving model, not only is the diffusion problem

simplified, the isotherm equation is also omitted.

We started from studying a one dimensional model and also study two prob-
lems that can be analytically solved to gain more insight into the model. Then the
simulation is run on a three dimensional model which has radial symmetry. The

results of the 3-D simulation are compared to the experimental data in Chapter

4.

3.2.1 1-D Model

For the simulation in 3.1 we need to keep track of z, T, ng, n; and neyqp.
Now the thickness of liquid z is zero in the gas region and one in the liquid
region. Similarly n; is zero in the gas region and saturated in the liquid region.

Therefore we no longer need to know z and n;. Instead only the boundary position



Chapter 3. Simulations 27

is needed.

To find the temperature T, (3.3) is still valid and can be further simplified.

In the gas region, the terms involving liquid are ignored.

dT d*T dT
(PaCa + chga) = (K, @ g)w) - pgcg%%

K, ® K, is exactly K7 (2.18) found in Chapter 2. Also p,c, is ignored because
the density of gas it is much smaller than the density of aerogel. By ignoring p,c,
it helps to speed up the calculation since the density of the gas p, is not a fixed
constant. Therefore to simulate the temperature in the gas region, the equation

we use is

A>T dn, dT'\ dt
dT = (Keffw + ngDgasd—;%) DaC

(3.9)

The temperature at the boundary is obtained differently because the liquid
ist set to have infinite heat conduction, and the temperature in the liquid part is

uniform. Thus heat flux from the gas part comes in and heats up the whole liquid

region.
AA
AT — JoAAL
Mtotal liquid massCl + Maerogelca
JoAAt
(prcr + paca) A(L — D)
JoAt

(i€ + paca)(L — )

The evaporation only happens at the boundary. The number of particles
evaporated is set to be the number of gas particles diffusing out of the boundary.

The heat lost by evaporation then cools down the liquid.

NevapAAT = —J,AAL
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dn, At
da: (prcr + paca) (L — 1)

AT = —Lynesap = LuDgas

Hence the temperature change at the boundary is

dT dn dt
dly = ( — Ke - as 7
b ( g o Dy dx | ) (paCa + prci)(L — D)

(3.10)

The last thing needed to be taken care of is the gas number density n, , but
this is no different than the diffusion equation (3.1). Again n,q, is zero in the gas
region. At the boundary the gas number density depends on the pressure which
is set to be the saturate pressure at the temperature. Therefore the conduction
equation which controls the temperature still couples with the diffusion equation

and can affect the diffusion rate.

Gas diffusion equation is dngy = %(Dgasdd%) -dt. Now the diffusion constant
Dgqs is simply Dges = —é%z. Different than stated in (2.7) since the liquid thickness
g

z is always zero. Furthermore since in the diffusion equation, Dy, is a function

1

"9
of pressure we changed 2 in to = d

P by the ideal gas law to make dn, a function
of pressure too. The ideal gas law is always valid in the gas region to so we only
need to keep track of either ny or p. By doing this, it is easier to program the

simulation.

To conclude, the simulation flow is summarized in Table 3.1. The computer

code is in Appendix C for reference.
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Table 3.1: Equations for simulating 1-D moving boundary model

boundary is at b

Gas | dny = L (B dey . gy

dT' =dT ’ boundary

P = P‘ boundary

9 = dz\kT dax
dn; =0
AT = (Kepps +mey 75 %) o -t
p =nkT
Boundary | ny = 2=
dT" = ( - Keff%’b — L, Dkgza“s j_ﬂbﬁ) (paca-l-pllcl)(L—b) - dt
p= Psat<T)
Liquid | ng = ng|boundary
dn; =0
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Figure 3.3: 1-D moving boundary model result. Position of the boundary as a function
of time. Red line is the simulation ( the total length L = 5¢m is divided into twenty
divisions so the boundary moves like steps. Blue line is the function fit to the simulation

result.

Results

Figure 3.3 shows that a five cm long one dimensional model takes 16790 sec-
onds to empty out the liquid methane. And the boundary position is proportional
to square root of time. The fact that the boundary position is proportional to
square root of time deserves further discussion. In the next section two analytical
solvable problems are presented to find the relationship between time and the
position of the boundary, or the relationship between length L and the time it

takes to empty.
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3.2.2 1-D Pure Diffusion Analytical Solutions

Two cases are analytically solved in Chapter 3.2.2 and 3.2.3. 1) Diffusion
Limit Model and 2) Conduction Limit Model. It turned out the boundary moves
as a square root function of time if there is only pure diffusion. The result coincides
with the result of the simulation. This result also implies that the times scales as
the square of the length so a tube of aerogel twice as long as this one will take four
times longer to empty. In the Diffusion Limit Model, there is only diffusion caused
by a fixed pressure difference inside and outside the aerogel with no temperature
change in the system. In other words the heat needed to evaporate the liquid is
arbitrarily taken to be zero. Therefore the diffusion rate controls the boundary
moving rate. In case 2) Conduction Limit Model, whatever evaporates diffused
out immediately. The time it takes to conduct the heat in to evaporate all the
liquid is studied. Again the liquid conductivity is set to be infinite so the whole

liquid region is at the same temperature.

Figure 3.4 is the illustration of the Diffusion Limit Model. The pressure
outside the aerogel is Fy and the pressure in the liquid region is P;, the saturated
pressure at the given temperature. Initially the whole aerogel is saturated with
liquid so the boundary is at « = 0. The first step is to find N in one aerogel tube.
Assuming the volume of the sample is V' = AL. The total number of aerogel

tubes in the system is ;‘a%{, where f is the filling fraction and a is the pore size.

Then we can figure out the total number diffusion rate in the system and find the

boundary position as a function of time.

From Poiseuille’s Law and the ideal gas law, one can find N.

4
d
_ e Poiseuille’s Law
8n dx
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Figure 3.4: One dimensional pure diffusion model. The aerogel has area A and length
L. Heat and gas particles only conducts or diffuses in from the open end x = 0. Pressure

outside the aerogel is Po and inside is at saturation pressure Psat. Po and Psat are fixed

constants.
. . p
N=V-—
kT
d .
dp _ _ 8n KT
dx wat p

Integrate from the open end to z, and then we get N when the boundary is at

b ©SpkT
0 Ta

Po

x.

4 .2 2
ma” Ps —Po

a 16nkT =

na' =g Af
16nkT x Ta?

Ntotal -

Then we can find the rate of boundary moving #. Let z} be the volume of one

liquid particle (2} = ).
3

T = _NtotalA_f
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3.2 .2 2
dx_ zya® ps — D

dt ~ 16nkT  x

3,2
Let § = 57 (P — pg) and integrate from time zero to time #;, the time it takes

move the boundary from 0 to .

Tp ty
/ xdr = / Gdt
0 0

2
x?
T — gt
5 Bty

3

2
o) = V2B B == ah) (3.11)

It turns out the boundary moves as a square root function of time if there is
only pure diffusion. The result coincides with the result of the simulation. This
result also implies that the times scales as the square of the length so a tube of
aerogel twice as long as this one will take four times longer to empty. The next
step is to study the other limit, Conduction Limit Model and find the correlation

between the length and time.

3.2.3 1-D Pure Conduction Analytical Solutions

Conduction is similar to diffusion, so the result also has the similar property.
However, conduction problem is a little more complicate. Figure 3.5 illustrates
the model. Initially the aerogel is saturated with liquid and is at its boiling tem-
perature. Outside of aerogel is maintained a temperature 7. Heat can conduct
into aerogel to 1) evaporate the liquid, 2) heat up the gas and, 3) heat up the
liquid. Therefore this is more complicate than pure diffusion case. However, if we
assume all the heat that conducts into aerogel only evaporate the liquid then we

can show that this no different than the diffusion problem.
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Figure 3.5: One dimensional pure conduction model. The aerogel has area A and

length L. Heat and gas particles only conducts or diffuse in from the open end x = 0.

Temperature outside the aerogel is To and inside is at boiling temperature Tb. To and

Tb are fixed constants.

Heat evaporates liquid

N , Ntotal and & are needed to solve the problem. At the boundary the heat

flux is
dQ@ 1 dT
Jp= S — _K——
ST dt A dr
. T, — T;
T
- Q KAT,-T,
N:—:
L, L, T
. A
Ntotal: _.];
Ta
- 3 K23T,—T,
-C'E:Ntotali_ “1°0 ’

Af ~ Lf «

(3.12)
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Let 5* be
Kz}

L,f

Then the solution to this problem is the same as the solution for the Diffusion

8 = (1, - T)

Limit Case (3.11)

Z3
o) = V2T F =TT (3.13)

Heat evaporates liquid and heats up gas particles

Now we assume the heat conducts in not only to evaporate the liquid but also

to heat up the gas. The liquid temperature still remains at the boiling temperature

T,. Assume the particle diffusing rate IV is a constant. From the heat conduction
and boundary condition, N can be found. Let the heat conducting in (2.14) equal

to the heat used to heat up gas particles and solve for T'.

Q1 — K2T Ady heat conduction

dx?

Qs = mcgNdT = mcgN‘fi—zdx heating up gas

Q1+ Q2=0
d*>T B meN dT

de2 ~  AK dx
KA meN

T(x) = — : _
(x) c1 N exp( A x) + ¢
The boundary condition gives
KA
T(O) = TO —C -+ Ccy = TO (314)
mc
KA meN
T(xp) =Ty —cp——exp(— xp) +co =T, (3.15)

mceN KA
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At the boundary the heat matches with the heat for evaporation.
Qly = LNy

@ at the boundary is JoA = —KA%

. dT meN
LN =—-KA—| =-KAq eXp(_KAxb

) (3.16)

dx '

Finally, use (3.14) ~ (3.16) to find N

. AK mc
N = In(1+—(Ty — T, 3.17
mcxy n( + LU( 0 b)) ( )

To double check the answer, let T, — 7}, then In (1 + ?—:(To — Tb)) —
7¢(Tp —Tp) which makes N the same as the pervious part (3.12). In the pervious
part there is no gas heating which can also be interpreted as the gas temperature

is closed to the surface temperature.

It is desired to write (3.17) with a constant K* so that N is of the same

format as (3.12). If we can do so then the solution to this model is also of the

form z(t) = /206t

ATy —T,
N=K2=
L, =z
KL mc
K* = ke In(1+—(1Ty, — T,
me(Ty — Ty) n(1+7-(To =)
o) = V2L = T ) (3.18)

There is one more condition to be considered to complete this section. That
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is the heat conducs in to heat up the gas and when it reaches the boundary, it not
only evaporates the liquid but also heats up the liquid. Then the liquid part is no
longer at a fixed temperature 7. This will change the particle diffusing rate N.
Then the temperature change at the boundary and moving boundary make the
problem complicated. We cannot predict if the boundary moving rate will still
scale exactly as the square root of time. With one more variable T}, unless one

more condition is specified, the problem is not analytically solvable.

To conclude this section, we found that the time it takes to empty the liquid
usually is proportional to the square of the sample length. This feature is also

found in the 1-D model in 3.2.1.

2

L
x = /20t Time:%

1
ﬁ_*7

is of the 107 order and [% is of the 10°. Therefore diffusion is a faster process and

Furthermore, by comparing % and we can find which is the slower process.

1
B

conduction is the slower one which dominates the time it takes to empty liquid

out.

3.2.4 3-D Model

The 3-D model is an aerogel sphere with 5 cm radius. The temperature
is 800 K uniformly throughout the surface. The model is radial symmetric, so
the boundary position, temperature and pressure at the same distance from the
center are the same. Therefore the simulation is similar to the 1-D model only
with the partial differential changed to gradient and divergence. In this section,
some tricks to make the simulation more efficient are introduced. And finally the

results of the simulations are presented and discussed.
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Figure 3.6: Three dimensional model. A spherical aerogel with radius 5 cm.

In thee dimensions, the flux and diffusion equations become

J=—-DVn
on - o
o -Vv-J

Since the model is radial symmetric, there are only radial terms in the equa-
tion.
on
J=—D—
or
on 10 ,, 0n
o~ (2pZ2
ot r2or (7‘ 87“)

Dimensionless Simulation

It is time to discuss how to program the simulation. First it is desired
to make the simulation in a scaled space and time so the simulation runs on
dimensionless quantities. From scaling the unit out, the fact that time scales as
length square can also be found here. Table 3.1 has all the equations needed to

be worked on.

First, define dimensionless variables 7 z, p, T', n, and 7.
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Figure 3.7: The indices in the simulation. r is the radius and z is the spatial variable.

J and Jg are gas particle flux and heat flux respectively.

r:(L—z)%
p=pF
T=TT,

Ng = NNNTP
n(T) = n(To) 1o
Kos(T) = K(T) Ky
Dyas = D Dy

t=1-7y

The radius is divided into N steps.

z is the indix from 0 ~ N (Figure 3.7)

Pressure Py = latm = 101300 Pa

Temperature Ty = 293 K room temperature

Gas number density nyrp = k% = 2.5 x 10%° #/m?

Gas viscosity 19 = n(Tp) = 1.105 x 107° Pa s

_ 4.725.1079.71-622
n(T) = 1+7/89.051 Pas
Effective thermal conductivity Ko = K.r¢(1p)
Diffusion constant Dy = ZO—‘ZQ D=2
0 i

Time 7 is the time scale.

Start with the gas particle diffusing equation and rewrite with dimensionless

variables. Notice that when changing % to diz there is a —1 coming from £

dr
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—1.
~1d, 3 Dgsdp
dng = 2 (7’ T dr) dt
1 d Dop Pydp
nyrp dn = — 2_—0P 704 dry

T — .
72 dZN ( ﬁk?ToT dz% )
Equate the constants on both sides and then we get the rescaled function.

lLd,,pdp

n= 3, (2 e dz) -dr (3.19)
L2
- 2
77 DyN? (3.20)

Since (3.19) runs simulation on arbitrary size of aerogel, the real time to
empty the aerogel only depends on . For example, if an initial condition takes
100 time steps to empty out the liquid inside the real time is 100y = 10054~ Be N2 and
thus a 10 cm aerogel sphere takes four times longer to empty than a 5 cm aerogel

sphere. The time scales as square of the length is very important.

Next is the conduction equation, which the same method is applied.

. 1d,,-dl p dpdT
dT = = —(PK— —=——-d 3.21
(Cl 22 dz(z dz) e il dz dz) ! (3:21)
K
e, = 0 Cy = mcgMNTP (3.22)
DO Pa Ca Pa Ca

One needs to take care of the temperature equation at the boundary carefully

because the model is spherical. The energy change per time %< is (volume (pc)

@ @)

dt

The heat out of the boundary by conduction is (JQ . area) and by evaporation is

(Lvnemp -area dx).

4 4 dTb 9 Dgas dp Arrdr
L N ¢ Amr? — L,
dT p dp 1
a7 _< jr d 323
b= (kG + sz> N_. (3.23)
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3K0 3nNTP LU
Cp =
(Paca+ prer) Do Y Ty (paca +picr)

(3.24)

C3 =

Therefore Table 3.1 becomes Table 3.2 in a three dimensional system. For
simplicity the ™ is omitted. The simulaiton is run in Mathcad and the program is

included in Appendix B.

Table 3.2: Equations for simulating 3-D moving boundary model

The spatial index z runs from 0 to N. 0 is the open end.

Boundary is at b; b starts at z = 2.

Gas | dn, = Z%d%(z?n%%) dr treal =7 T
dnl =0 v = #}2\[2
1= (o &L (KL or HRUE) i | 0= i
po it e = P
Boundary | ny, = %=
dnl Neyap = n%d_i’iz dr
ATy = <63Kg + 6477%%)) . Nl_z Hdr = T Cai-lp(zocz)Do
p = Pat(T)/po ¢y = Smarple

Ty (pa catpici)

Liquid | ng = ng|poundary
dnl =0
dT = dT’boundary

pP= p| boundary

The entire simulation is then dimensionless. The constants ¢, cg, ¢35, and ¢4
are all dimensionless. We can run the simulation once and scaled it for different
sizes of aerogel through the time constant 7. On the other hand, what can slow
the simulation are the pore size a and the number of spatial steps N. a is in the

term of diffusion constant Dy, so a bigger pore size not only makes the time step
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small but also make the heat conduction terms ¢; and cs smaller relative to the
diffusion term. (The coefficient for the diffusion term is 1.) In this thesis, the

pore size is set to be 100 nm.

There is nothing we can do with the pore size a but we can run a trick to
make the time to run the simulation depends less on N. For a good and more
accurate simulation result, the steps should be as small as possible. However, the
time it takes to run the same simulation for N = 10 and N = 100 is 10? times
more. To improve on this, a second index M is going to be introduced in the next

subsection.

Speed Up The Simulation

To speed up the simulation, the length of the gas part is always divided into
M steps. For example, let M be 10. The whole radius is divided into 50 steps

(N = 50), one step Ar is %Wide. When the boundary is at z = 2, one simulation

step in the gas region is ZAA[ = % . % wide, which is smaller than Ar. Then when
the boundary is at z = 30, one simulation step in the gas region is % . %, which

equals to 3AT.

There are two reasons why a second index is good. First of all, the most furi-
ous reactions happens at the beginning of the simulation, when the temperature in
aerogel is 700 K lower than the surface. Before the second index is introduced, this
is when the simulation is done by the least number of steps, since the gas region
is small. Therefore, if at the beginning gas region is divided into smaller steps,
the simulation can be more accurate. On the other hand, when the boundary is
further away from the surface, the temperature and the pressure distribution are

approaching their steady states. The diffusion and conduction slow down. Before



Chapter 3. Simulations 43

the second index is introduced, the simulation is running through a lot of steps

when not much is happening.

If the gas region is only divided into M steps, the simulation runs more effi-
cient. Since the main parts in the simulation are the gas region and the boundary;,
it is better to have good step sizes for the gas region. The only things change in the
liquid part is the pressure and the temperature, but these two quantities are the
same as at the boundary. Therefore by keeping track where the boundary is and
the pressure and the temperature at the boundary, we have all the information of

the liquid region.

The array size this simulation needs is M+2. ¢ = 0 represents the surface.
i =1 ~ M are the gas region. And i = M + 1 is the boundary. In each i'®
array there is another array with size 6. The second array keep tracks of the real
time, boundary position, temperature, pressure and the gas and liquid number

densities. The Mathcad program is provided in Appendix B.

The time constant v changes whenever the step size changes, but the result
obtained by this method can still scale to different length L. The results are

presented in the next subsection.

Simulation Results

Initial Conditions: A sphere of 5 cm radius aerogel saturated with liquid

methane at 112.3 K.

External Conditions: Pressure at the surface is fixed at latm. Temperature

at the surfaces is fixed at 800 K.
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Figure 3.8: 3-D simulation result: Boundary position v.s. time. 0 is the open end and

5 is the center. It takes 6749 seconds to empty the liquid methane.

Simulation Result: Figure 3.8 to Figure 3.16. It takes 6749 seconds to empty
the liquid methane. The temperature in the liquid raises about 22 K during the

first 60 seconds and remains there with little fluctuations.

The boundary moves similarly to the rectangular model at the beginning,
proportional to the square root of time. But at the end it speeds up and becomes
proportional to the cubes of time (Figure 3.8). Then we convert the boundary
curve to the liquid weight curve which is scaled to its initial weight. Although it
takes 1.8 hours to empty the liquid methane, at the first hour the aerogel already
loses 90% of the liquid. (Figure 3.9)

Figure 3.10 gives a good idea of what happens in the aerogel. The tem-
perature quickly heats up to 133 K and remains there. This means after te first

60 seconds the heat which conducts to the boundary only evaporates the liquid.
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Figure 3.9: 3-D simulation result: Liquid weight v.s. time. The liquid methane
weight is scaled to its initial weight. At 840 seconds, 50% of the liquid remains. At
2520 seconds, 20% of the liquid remains. At 3600 seconds, 10% of the liquid remains.

And a balance between heat conduction and particle diffusion is reached. Every
time the boundary shifts, the system equilibrates the pressure and temperature
distribution. This explains the fluctuations on the temperature curve. Figure 3.11
shows in the first 5 minutes of the simulation, the boundary movement matches

with the peaks of the temperature.

Figure 3.12 and Figure 3.13 further show the temperature and pressure dis-
tribution in the M scaled spatial steps of the gas region. For time at 2000, 3000
and 4000 seconds, the pressure and temperature changes are small. Only after
5000 seconds, when the boundary is at 3.5 cm away from the surface and the
boundary starts to quickly move toward the center (proportional to time cube),
the pressure in the gas region quickly drops. Figure 3.14 and Figure 3.15 are

the temperature and pressure profile scaled to the real spatial steps. We can see
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Figure 3.10: 3-D simulation result: Liquid temperature v.s. time. At 60 seconds, the

temperature reaches 133.58 K and fluctuates between 134.29 K and 132.24 K.
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Figure 3.11: 3-D simulation result: Liquid temperature and boundary position v.s.
time for the first 300 seconds of the simulation. The fluctuation period matches with

when the boundary moves.
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how the aerogel heats up and how the pressure inside changes as the boundary

moves.
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Figure 3.12: 3-D simulation result: Temperature Profile. Temperature distributions
at different times show the change throughout time inside the gas region. The gas region

length is rescaled so M = 11 is the gas-liquid boundary.

Despite the fact that the liquid temperature raises only 22 degrees, which
is still more than 600 degrees colder than the surface, the pressure inside the
liquid is at the saturation pressure of that temperature. Therefore, saturation
pressure around 133 K is more than 4 atm. We doubt if aerogel can sustain a
big pressure that is 4 atm. In the following a different simulation is run with the
aerogel 3 pum pore size instead of 0.1 ym. The new simulation results in a small
pressure increase inside the aerogel (Figure 3.17). This pore size is determined by
comparing the gas diffusion coefficient in Adam Papallos thesis, Aerogel: A Study
in Elastic Moduli and Diffusion [3]. In Adams thesis the gas diffusion constant
is

Dagam = 72P x 107% +5.67 x 1074 m?/s

By equating the coefficient of P with the coefficient of our gas diffusion constant
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Figure 3.13: 3-D simulation result: Pressure Profile. Pressure distributions at different
times show the change throughout time inside the gas region. The gas region length is

rescaled so M = 11 is the gas-liquid boundary.

g, a equals to 3.18 um. (n =17.62 pPas @ 294 K, 1 atm)
With a bigger pore size, diffusion is much faster and the internal pressure is
smaller. A change in the pore size, however, changes the time scale. A simulation

with a = 3um takes 900 times longer than the simulation with a = 0.1um.

Luckily we learned in Chapter 3.3 that the aerogel drying process is domi-
nant by the conduction rate so the faster diffusion rate has little impact on the
simulation except for the internal pressure distribution. The simulation result
shows that with a = 3um it takes the same amount of time (6750 seconds) to
empty the liquid. The boundary moving rate turns out to be identical with the
simulation on pore size being 100 nm. On the other hand, the liquid temperature
rises at most 0.21 degree and the corresponding saturation pressure is only 1.017

atm.

Unfortunately the internal pressure cannot determine the actual pores size.

The pores in aerogel need not to be spherical and be of a uniform size. The pore
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Figure 3.14: 3-D simulation result: Temperature Profile. Temperature distributions
at five different times are put together to show the change throughout time at different
position inside aerogel. The dots on each curve indicate the boundary positions. At x

= 0, T is the fixed surface temperature 800K.
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Figure 3.15: 3-D simulation result: Pressure Profile. Pressure distributions at five
different times are put together to show the change throughout time at different position
inside aerogel. The dots on each curve indicate the boundary positions. At the surface,

pressure is fixed at 1 atm.
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Figure 3.16: 3-D simulation result: Liquid Pressure v.s. time. This result is obtained
by calculating the saturation pressure of the liquid temperature (Figure 3.10). The

pressure fluctuates between 4.03 atm and 4.56 atm.
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size in our simulation represents an effective pore size that describes the system.
How well the pores connect to other pores is also included in this effective pore
size in the simulation. Therefore, we cannot determine the size of the pores by

just comparing the diffusion constants or by comparing the pressures.
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Figure 3.17: Pore size 3 um simulation result: Liquid pressure and temprature v.s.
time. The temperature fluctuates between 112.33 K and 112.51 K. The pressure fluctu-

ates between 1.002 atm and 1.017 atm.

The most important result of the simulation is the liquid weight curve be-
cause this can be compared with the experiment. In the experiment the weight of
the aerogel is recorded while the aerogel is burning. By comparing the two curves,

we can tell how well the simulation describes the system.
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Experiments

4.1 Setup of the Experiments

The experiments used six aerogel samples with different sizes and shapes.
Two were placed on a plate and the other four were hung. Figure 4.2 is an

illustration of the samples.

Apparatus:

A balance with an arm 10 times the distance than the other arm was setup. The
short arm was connected to a force meter. The force meter measured between 0
and 10 N and it was connected to the computer which recorded time and force.

The long arm was used to hang the aerogel sample.

Preparation of the methane soaked aerogel sample:
A cold bath of liquid nitrogen was prepared. A chunk of aerogel was placed in a
test tube which was connected to methane gas. Then the test tube was lowered

into the cold bath and the methane gas started condensing. When liquid methane
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Figure 4.1: The apparatus and a burning aerogel. The aerogel was burning on the

long arm of a balance which was connected to the force meter.
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completely covered the aerogel chunk, the sample was ready.

The methane soaked aerogel was hung on the apparatus through a long hook.
The sample was set on fire while the force meter recorded the time and weight loss.
The experiment ended when the flam went out and the piece of aerogel started

smoldering.

4.2 Results of the Experiments

The results are presented as a plot of scaled weight versus time in Figure 4.3.
The weight difference between the beginning and the end of the experiment is set
to be the total liquid weight which is the denominator of the scaled weight. The
weight at each time minus the weight at the end is the remaining liquid weight,

also the numerator of the scaled weight.

The time each sample took to burn is indicated in Figure 4.2. Since each
sample has a different size and a different shape, the burn off time is expected
to be different. The fact that time scales with the square of the length helps
with comparing the data. In a spherical model, the time it takes to burn is
proportional to the radius square. The characteristic length of other geometry
is studied in order to compare the data sets. This length is called the effective

length, Lesy.

The effective length is defined by the analytical solutions to the diffusion

problem with a constant diffusion coefficient D.

5 DV*n (4.1)
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The solution for a sphere with radius R with boundary condition 1(R) = 0

1s:

U(r,t) = o(t)Y(r) do(t) = e o(r) = sin(kor)
]{507”
No = k2D = ”;f

L

1> 0 define the effective length
0

The characteristic time scale 7 in this solution is

square L? sy for a spherical model to be R?, which is proportional to /\io

The solution for a rectangular block model with sides L,, L, and L, has Ag

-1

: 2(1 1 1 : o (1 1 1\3%
equaling to D7 (L—% + z + L_g) The effective length is (L—% + 2 + L_g) 2. If one
side is much shorter then the other two, the time scale is dominant by the shortest
length. This is intuitive because it is the easiest to diffuse out from the shortest

path.

Finally, the solution for a cylinder with radius S and length L has Ay equaling
to DWQ(W;B—EQ + %) where x is the first zero in the zero-th order Bessel function,
xog = 2.43. So the effective length is (75—%2 + %)% With this information, the
effective length of each sample is calculated. The time of each data is divided by

their effective length square so the data sets can be compared.

The burn off results are shown in Figure 4.3. Sample 1 and Sample 6 are
burned from a plate while the others are directly hung from the arm of the balance.
The noise of the data is caused by the sample swinging while the data was taken.
It is not easy to take data with low noise because the long hook swung after the
samples were placed. Once the aerogel sample was removed from the cold bath,
the methane started evaporating and the water molecules started condensing onto
the aerogel surface, so there is no time to wait for the swinging to stop. The

experimental result for Sample 1 is obtained by video taping Sample 1 burning
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Figure 4.2: Aerogel samples. The sizes of the aerogel samples are indicated next to
each graph. Leff is the effective length of the sample and 7 is the time each sample took

to burn.

on a scale with a can separating the scale and the flame. Therefore there was no
swinging which caused the noise. However, it was not efficient to transcribe the

reading of the scale from the recording of the video camera.

The results for Sample 3, 4 and 5 match relatively well with one another.
Since the noise on Sample 2 and 6 are big and the result for Sample 1 is obtained
by another method, the average curve is taken by the average of Sample 3, 4,
and 5 with the scaled time. The average effective length is 0.92 cm. The average

burning scaled time is 186 seconds/Lef f2.

To compare with the simulation, the average data and the simulation data
were plotted on Figure 4.4. The results match until the weight is 40% of its origi-
nal. Afterwards the simulation weight losses much slower than the experiment. If
compared by scaling time with the total time, then the weight losing rate of the

simulation is faster than that of the experiment at the beginning.
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Figure 4.3: Burn off results of six samples. The fraction of the total liquid weight
and time were plotted. The samples’ shapes and sizes are indicated in Figure 4.2. The

results for sample 1, 2 and 6 are in A. and the results for 3, 4 and 5 are in B.
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There are discrepancies between the experimental result and the simulation.
Few things might affect the experimental results. First, the preparation affects the
result due to the methane evaporation and the water molecules in the air started
condensation onto the aerogel after the sample was removed from the cold bath.
Although this only cost at most 30 seconds, it was already 20% of the time burn
off time. Second, the edges of the aerogel samples began smoldering before the
end of the experiments. When the aerogel itself started smoldering, the weight
differences recorded were not purely from the loss of liquid methane. The above
two are explanation to the discrepancies between the simulation and experimental
results. We could eliminate theses two causes by other experimental setups. On
the other hand, there is one consideration that could be included in the simulation.

This might help obtain a model that better describes the system.

The simulation is run under a uniform temperature on the surface. When the
aerogel is burning, however, the temperature around the surface is not expected
to be the same. If there is a temperature distribution on the surface, the liquid
inside the aerogel will have different temperatures. Then the pressure inside the
liquid is not uniform. The pressure difference might cause the liquid to move and
changed the simulation result. In the next chapter, we are going to discuss how the

temperature distribution on the surface affects the boundary moving rate.
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Figure 4.4: Averaged experimental data plot and simulation data plot. The y-axis
is the liquid weight over the initial liquid weight. In A the x-axis is the time divided
by Lgf Iz The average data ends at effective time being 186 and the simulation ends at

effective time bein 269. In B the time is scaled to the total burn off time.
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Discussion

This chapter is about two features found after comparing the simulation
with the experimental result. First is the length square relationship with the
desorption time. The second is about the discrepancies between the simulation
and experimental results. More experiments and simulation models have been

done to address the latter issue.

5.1 Relationship between Time and Length

The feature that the desorption time scales with the length square has
showed up in the simulation result of the 1-D Boundary Moving Model, and in the
analytical solutions to the Pure Diffusion Model and Pure Conduction Model. In
the 3-D model, the time constant v is also a function of the length square. Thus,
if the experimental results also support this feature, we can easily find the burn

off time of a different chunk of aerogel.
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Figure 5.1: Burn off time v.s. Effective Length. The burn off time of the samples
and their effective lengths are plotted in this graph. The dash line is the function
t(r) = a - 22, where a is an constant. The prediction that the time scales with the

square of the length matches well with the experimental results.
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Comparing the burn off data by finding the effective length turns out to be
successful. Figure 4.3 successfully put all the data sets together by scaling the
time with the effective length square. Furthermore, Figure 5.1 plots the burn
off time and the effective length of each sample to compare with the prediction
t(z) = a -2 tis the burn off time, x is the effective length (cm) and a is a
constant. a equals to 180.7 fits the curve. (a is 170.6 if trying to fit to all data
points, a is 180.7 if excluding Sample 1 and 6 which were burnt on a plate.) To
conclude, the feature that the time is proportional to the length square is also

found in the experiment.

5.2 Temperature Distribution on the Surface

Because the simulation results and the experimental results have some dis-
crepancies, we think the temperature difference on the surface might be crucial.
The temperature differences on the surface cause the differences in liquid tempera-
ture at the boundary. Thus the saturation pressure at the liquid is different. With
pressure differences the liquid can flow around and the liquid boundary moves by

means other than evaporation.

5.2.1 Improved 1-D Model

The 1-D moving boundary model is studied again. Figure 5.2 is an illustra-
tion of Liquid Moving Model. The model is the similar to the boundary moving
model in Chapter 3 but there are two open ends, x = 0 and x = L. The two ends
are applied with different surface temperatures. Furthermore, the liquid thermal

conductivity is considered in this model so the temperature in the liquid region
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Figure 5.2: One aerogel tube in 1-D Moving Boundary Model. This model has two
open ends, x = 0 and L, and two boundaries, 7 and xr. The gas particles diffuse out
through the two ends. The open ends have two different temperatures. The heat con-
ducts in through the two ends as well. The number of liquid particles at the boundaries

can decrease or increase by evaporation or by viscous flow.

is not uniform. The combined aerogel and liquid thermal conductivity K; ® K, is

obtained by the same way as K, ® K, (Chapter 2.2.2).

This model has two boundaries, X and Xg. The gas particles in two gas
regions only diffuse out through the open end that is closer to the region. At the
boundary the liquid particles can evaporate or move toward the boundary which

has lower pressure.

The Poiseuille’s law (2.6) is used to calculate the liquid flux as it is used to
calculate the gas particle flux. The pressure difference in (5.1) is the difference of
the pressure at two boundaries and the distance is the length of the liquid region

Xp— X

2
Jiig = ——7— (5.1)
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With this information the simulation is built. Detail of the programming is
shown in Appendix E. The results are shown from Figure 5.3 to Figure 5.5. If
there is no temperature difference at the cold and hot open end, the liquid does not
move. The simulation performs as if two 1-D Moving Boundary Models sticked
back to back. In Figure 5.3, the red line shows that if the temperatures on both
open ends are the same, the boundary ends at the center of the sample (2.5 cm).
Figure 5.3 shows that when there is a 50-degree difference, the desorption takes
longer than when there is no temperature difference. But when the temperature

difference is 100 K, it takes shorter amount time to desorb.

hot open end 2 T T T T T
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7EE00K | o
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(4593, 0575
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Figure 5.3: Three sets of boundary position v.s time. 0 cm is the open end with colder
external temperature. 5 c¢m is the open end with 800 K. The red line represents the
boundary of the simulation with both ends have temperature 800K. The liquid does not
move so the last boundary is at the center of the aerogel sample. The blue line is with
the colder end at 750 K. It takes longer than the red one and the boundary ends closer
to the cold end. The green line is with the colder end at 700 K. It takes shorter time

than the red one. The boundary ends even closer than the blue one.
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Figure 5.4: Total time and the last boundary position v.s the cold end temperature.
The simulation runs from 112.3 to 800 K to show the relationship between the desorption
time and the cold end temperature. It also shows the relationship between the ending
boundary position and the cold end temperature. The dash line at 0.375 cm is the

initial boundary at the cold end.

The explanation to this is that when there is a small temperature difference,
the pressure difference at the two liquid boundaries is small, so little of the liquid
is pushed to the cold boundary. At the same time since one end is colder, the
desorption takes longer. Therefore the total time the sample takes to dry is longer
then the case with no temperature difference at the boundary. In the other case,
when the temperature difference is big, the rate of liquid being pushed to the
boundary compensates for the rate of evaporating. The total time the sample
takes to dry is then shorter. This result is confirmed in Figure 5.4. In Figure 5.4
the temperature at the cold end runs from 112.3 to 800 K while the hot end is
always 800 K. For one end at 112.3 K, it only takes 40 % of the time of the case

with no temperature difference. The liquid boundary is pushed against the cold
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open end. From the simulation we know that besides a transition temperature

that is close to the hot end temperature, the desorption rate is much faster.
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Figure 5.5: Liquid weight v.s time. The results of two simulations in which the tem-
peratures of the cold ends are 800 K and 700 K. The weight is presented as Weight / Total
Weight. In A the red line ends at 4446 seconds, and the blue line ends at 3713 seconds.

In B the time is scaled to the ending time each simulation.

The one dimensional Liquid Moving Model says that if there is a big tem-
perature difference, the burn off time will be shorter. This might explains why
the desorption time in the 3-D simulation in Chapter 3 is longer than the real
experiment. Figure 5.5 compares the liquid weight curve with two cases, the cold
end temperature being 800 and 700 K. Comparing Figure 5.5 with Figure 4.4,
the experimental result, the similarity in the shapes of the curves are obvious.
However this is a one dimensional model. This model is hard to carry out for a
three dimensional sphere because the radial symmetry is lost so the simulation
needs to calculate through each coordinate in the three dimensional place. To

conclude, if there is a temperature distribution on the surface, the rate of weight
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loss will be greatly affected.

5.2.2 Surface Temperature Experiment

A small experiment was conducted to understand the temperature distribu-
tion on the surface of a burning aerogel. A thermal couple was placed at the tip of
an aerogel sample saturated with liquid methane. All but one side of the sample
were wrapped with aluminum foil to protect the thermal couple. While burning,
the sample was rotated to sideward and to point upward every few seconds. The
voltage across the thermal couple jumped when the sample rotated. The sample
was even pointed downwards a few times before the flame went out. The voltage
was then converted to temperature shown in Figure 5.6. This experiment shows
that the temperature on the side is hotter than the top, and the bottom is prob-
ably the hottest. The temperature difference between at the sides and on the top
can be as big as 120 degrees.

Surprisingly is that the temperature at the surface gains slowly instead of
maintaining around a high temperature. This experiment not only shows the
temperature distribution on the surface but also points out that the temperature
at the surface is not fixed. Future research models should take into account of the

time dependent temperature at the surface.
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Figure 5.6: Surface Temperature Measurement. The burning aerogel sample was
rotated every couple second to point up (1) or right (—). Close to the end the sample
was also pointed downward (|). The drop of temperature at the end was because the
flame went out. This graph indicates that the temperature is higher close to the bottom

of the surface.
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Conclusion

This thesis had done both theoretical and experimental work on the proper-
ties of desorptioin in porous media under a pressure and a temperature gradient.
Organic aerogel and methane were studied in this thesis. Diffusion and conduction
are the main concept to understand the desorption process. With the isotherm of
liquid adsorption in spherical pores, simulation models are built to describe the
system. A few variations of models have been studied and the results were com-
pared to the experiments. The experiments took chunks of liquid methane soaked
aerogel samples and monitored the weight while the samples were burning. Fur-
thermore the temperature distribution at the surface of the aerogel sample was
measured in order to improve the simulation model. Future research needs to

focus on the time dependent surface temperature.

The results of the simulation and the experimental results both show that
the total desorption time is proportional to the square of the sample’s effective
length. For a spherical sample the effective length is the radius. There are,

however, discrepancies between the simulation and the experimental results. The

69



Chapter 6. Conclusion 70

liquid weight losing rate is slower than the experimental result at the end of the
burning. The experiments take shorter time than the simulation. This leads to
further investigation of a temperature differences on the surface, which turn out
to have a significant impact on the result. The temperature distribution results
in the liquid being pushed to the colder part, but because the liquid remains close

to the burning surface, it evaporates faster.

The simulation result states that a five cm radius spherical aerogel saturated
with liquid methane takes 1.88 hours (6750 seconds) to burn. On the other hand,
it takes 1.25 hours (4500 seconds) to burn by the prediction using experimental
result. The goal of this project is to extend the results to liquid hydrogen. Under
the same condition, simulation result with hydrogen states that it takes 25.4
minutes (1525 seconds) to burn. This result indicates that storing hydrogen in
aerogel chunks prevents explosion and thus the aerogel filled hydrogen fuel tank

is a good suggestion to improve the safety of hydrogen storage.

Furthermore, this study goes beyond aerogel. The parameters used to de-
scribe a porous material in the simulations are pore size, filling fraction, density,
heat capacity, and thermal conductivity. If these parameters of any porous ma-
terial are known, the simulation models apply. To conclude, this thesis has done
a general study of desorption properties of porous media, with the models and
experiments carried out on organic aerogel and methane. This thesis also answers
the original question, whether or not filling aerogel into hydrogen fuel tank can

increase the safety level of hydrogen storage. And the answer is yes!
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Constants

Aerogel

pa=140 kg/m?  density
c,=1700 J/kg K Theat capacity
k,=0.003 W/m K thermal conductivity

71



Appendix A. Constants 72

Methane

T, = 112.3 K boiling temperature @ 1 atm

m = 26.672-1072" kg mass per particle

p=422.4 kg/m? liquid density
2 = 3.98-1071° m  liquid particle size (23 = m/p)
v = 0.01346 N/m surface tension
T, = 1500 K  van der Waals temperature
L,=1362-1073 J  latent heat per particle
n = 121.34 uPas liquid viscosity @ T,
m(T) = 204.52 - (g5557) 264
ng = 4.38 wPas gas viscosity
10-3.71-622
(7) = AT
¢ = 3480 J/kg K liquid heat capacity @ T,
¢y = 2218 J/kg K gas heat capacity @Q T,
K; =0.186 w/m K liquid thermal conductivity @ T,
Ky(T) =0.341 — 0.001412 - T
K, =0.011 w/m K gas thermal conductivity @ T,
K,(T)=4.008-107% -T2 4 6.48 - 1073



Appendix B

Mathcad Program - Simulation
II: 3-D Boundary Moving
Model

3-D Spherical Simulation of moving boundary model. The second index

1 ~ M is for the Gas region.
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Spherical Simulation
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Simulate fram nountil the real time reaches "otalTime" with time step dtime
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Initial Conditions
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Evalve from "n" until the real times reaches "time" or until the boundary moves.
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Simulation resulls
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Liguid pregsure (atm) v.s. Time (s)
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The main code, sets the initial condition and evolve

until the real time reaches "TimeTotal"Report back
the time, boundary position, liquid temperature and
the liguid number density at the boundary
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Initial conditions
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Evalve for a given condition "n" until the scaled time reaches "time"
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1 - D Moving Liguid Modal
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The rmain code, sets the initial condition and iterate DC until the real time reaches "TimeTotal"

Repart back the time, baundary position, liquid termperature and the liguid number density at the
boundaries for every "Timelnterval”.

btizm(bl, by, T1, Ty, dtitme , Timelnterval, TimeT otal) =
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Initial Condition, bl br are the bondary position of the left and right boundary.
In the simulaitons bl =3 br=N-3
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Start from a given condition “n” and iterate with time step ® di” until the time reaches “time”

DC(n, time, dt) =

N & colsft) - 1
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N
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if rﬂm{ 0
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When the left boundary equals to the nght boundary posttion,
nstead of DT tme, dt), DChrblin time, dt) 13 executed. Since
the left and right boundary are at the same position, the louid
wiscous How stops.
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right
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i=10..

ic = [C73, N - 3,700,500

N

dt = 0.07
M

d2 = DO d, 5000, df)

d3 = DOy d2, 7000, d)

d = DC(ic, 3000, df)

Fressure at each position of the sample

atm

......
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