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Abstract:

This thesis probes possible mechanisms behind anomalous freedecays commonly

observed in superfluid helium third sound flows. Several models, based on vortex

dissipation, for the additional dissipation these anomalous freedecays imply are

constructed, tested, and modified to be consistent with the observed

characteristics. This work concludes that these simple models involving only

vortex friction and a creation energy are insufficient to explain the observed

characteristics. From this conclusion a model is proposed that holds promise for

future study.
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Chapter 1

Introduction

1.1 Overview

This thesis will attempt to explain aspects of third sound data previously taken

by the Quantum Fluids Group at Wesleyan University. It seeks to further the un-

derstanding of and propose models for anomalous features observed in freedecays

of third sound flows.

Format:

1. Chapter 1 will provide a brief introduction to the underlying physics of

superfluidity and quantized vortices, examples of anomalous freedecays, and

an analysis of the experimental parameters of the freedecays.

2. Chapter 2 will propose several possible vortex dissipation-based models for

the observed anomalous phenomena and test their validity versus the ex-

perimental data. It will also find the number of vortices involved in the

5



CHAPTER 1. INTRODUCTION 6

dissipative motion.

3. Chapter 3 will find the positioning of the dissipating vortices within the cell.

4. Chapter 4 will propose a new model for the freedecay anomalies that is

informed by the preceding work and holds promise for future work.

1.2 Superfluid

As the temperature of Helium-4 lowers below the λ-point, 2.17 K, the helium

atoms collapse into a shared macroscopic quantum mechanical state and the fluid

enters a new matter state, that of the superfluid. Because the conformity of the

helium atoms to their shared quantum mechanical state dominates their normal

inter-atomic interactions, superfluids allow experimentation on macroscopic quan-

tum mechanical states. Below the λ-point, while the fluid itself does not separate,

the fluid may now be modeled as being comprised of two interpenetrating, co-

existing fluids. These fluids of the so-called “two-fluid model” exist simply for

the purpose of conceptualizing the observed physical properties of the superfluid

and do not in actuality exist as separate entities. One component, the normal

fluid, is a soup of thermal excitations. The second component, the superfluid, has

zero viscosity and infinite thermal conductivity. Each of these fluids can possess

its own velocity at each point within the fluid and has its own mass density, a

fractional component of the total mass density. Below 1 K, the temperatures at

which the experiments for this work were performed, the liquid consists almost

entirely of the superfluid component. [1]



CHAPTER 1. INTRODUCTION 7

1.3 Third Sound

A property of superfluid that is of particular importance to the work presented

here is its ability to form uniformly adsorbed, very thin films upon all surfaces

within a container. These films have the ability to propagate waves of several

types through them. [1] In the wave motion of interest, third sound, the superfluid

component moves in a largely lateral manner, sloshing back and forth like shallow

water ocean waves. [1] As in shallow water waves, here too there is a restoring

downward force, but it is the van der Waals force with the substrate, acting in the

same capacity as the earth’s gravitational force upon the ocean. In third sound

waves, the normal fluid component of the film is clamped to the substrate via the

dissipation of thermal excitations, that is its local velocity, vn, is zero everywhere

within the film. The lateral displacement of the superfluid part far exceeds the

vertical displacement and hence this largely horizontal motion allows the waves to

be treated as a two-dimensional system. This is quite attractive as this condition

removes the vertical dimension, greatly simplifying the fluid mechanics required.

1.4 Freedecays

A common experiment performed by the Quantum Fluids Group was to drive

these waves up to a known amplitude and then to switch off the driving force and

allow them to decay away. These waves should experience an exponential decay

due to thermal fluctuations within the superfluid as it undergoes its oscillations.

As is commonly known, on a semilogarithmic graph (logarithmic amplitude vs.

linear time) exponentials are represented by straight lines. In fact, many of the
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freedecays do exhibit this behavior as can be seen in Figure 1.1.

Figure 1.1: An example of a freedecay exhibiting normal, exponential linear be-

havior.

But, many of the freedecays, often taken at higher amplitudes, but not always,

do not show this behavior. Instead, they display the characteristics of having

two decay constants Q, one that is active only at high amplitudes which then

transitions to another at low amplitudes, a “kink-like” transition, as in Figure 1.2.

This behavior, with two straight lines on a semi-logarithmic plot, is quantitatively

unexplained, but qualitative hypotheses have been proposed.
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Figure 1.2: An example of a freedecay exhibiting the two decay constant “kink-

like” behavior on a semi-logarithmic plot.

Some freedecays show an even stranger transition, a “bulge-like” curving tran-

sition from one decay constant to another as in Figure 1.3.

Figure 1.3: An example of a freedecay exhibiting the “bulge-like” transition be-

havior between decay constants on a semi-logarithmic plot.

The goal of this work will be to further understanding of and reach new con-
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clusions about the mechanisms behind these anomalous freedecays, in particular

those that exhibit the “bulge-like” transition behavior.

1.5 Superfluid Vortices

All vortices are characterized by a circular flow with closed streamlines around a

core where quantitatively different behavior occurs. For superfluid vortices within

4He, this core size is approximately a◦ = 1.3 Å. [2] What sets superfluid vortices

apart from their cousins in non-superfluid is the fact that their circulations κ are

quantized:

κ =
∮

vs · dl = n
h

m4
, where n = 0, 1, 2, . . . (1.1)

where vs is the velocity of the superfluid, h is the Planck constant, and m4 is the

mass of a 4He atom. What is notable here is the quantization condition indicated

by the quantum number n. As can be seen from Equation 1.1 the velocity field of

the vortex is also quantized:

v = n
h̄

m4r
φ̂ (1.2)

where r is the distance from the center of the vortex. [3] The unit vector φ̂ denotes

the direction of rotation, where positive φ denotes the right-handed rotation direc-

tion when looking on the vortices from above. This convention will be employed

throughout the thesis.

While superfluid vortices are quantized, within our third sound films vortices

with quantum numbers n > 1 are never seen, as single vortices of higher quanti-

zations represent a higher energy state than a pair of singly-quantized vortices.
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1.6 Magnus Force

Objects with circulation about them exposed to a flow experience a lateral force

known as the Magnus force. Quantized superfluid vortices may be treated as

physical objects due to their quantum stability and hence also undergo the Magnus

force when placed in a third sound flow. [4] Due to the rotational flow of the

vortex within the already existing (and locally uniform) fluid flow, the velocity

of the fluid surrounding the vortex is faster than the background flow velocity on

one side and slower than the background flow velocity on the other side. This

imbalance of velocities results in a net force on the vortex due to the Bernoulli

force as can be seen in Figure 1.4.

Figure 1.4: Illustration of the Magnus force upon a vortex.

The Magnus force in the case where the vortex is allowed to move at velocity
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vv is given by the following formula: [1, 2]

FMagnus = ρκh (vs − vv)× k̂ (1.3)

1.7 Anomalous Freedecays

Our study begins with a survey of the experimental parameters of the anomalous

free decays. Out of several thousand free decays that were preserved in the labo-

ratory’s files on paper traces, 732 were found to display some form of anomalous

behavior of the two types described earlier in Section 1.4. What percentage this is

of the total number of freedecays is unknown as data were commonly saved only if

they showed some characteristics of interest due to the high cost of computer mem-

ory and the inconvenience of printing paper traces. In addition, at the time only

the low amplitude behavior was of direct experimental interest. These anoma-

lous freedecays were catalogued in a Microsoft Excel spreadsheet incorporating

identifying information for each freedecay, resonant frequency, mode, third sound

speed c3, decay constants Q for the high and low amplitude regions, electronics

calibration values, instrument time constants, critical amplitudes and velocities,

and film thickness h. While temperature was not recorded on the spreadsheet, no

temperature dependence was observed. In addition, graphs of various parameters

showed no apparent dependence on resonator mode number m (Figure 1.5) or film

thickness h (Figure 1.6.)
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Figure 1.5: Graph of the observed dependence of the critical amplitude on mode

number m.

Figure 1.6: Graph of the observed dependence of the critical velocity on film

thickness h.
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In addition, an analysis of the mode resonant frequencies determined that all

of the anomalous freedecays took place in the standing-wave modes as opposed to

the rotating modes. This analysis was based on the work of Hai Luo and made

use of the two-level system analysis he applied to the third sound resonators. [5]

1.8 Summation

The following work will attempt to explain and further understanding of these

anomalous freedecays. This will be performed through the proposal of possible

models attempting to explain the observed characteristics and the subsequent

testing of their validity. Attempts will also be made to ascertain outside these

models more about the nature of the mechanisms at work within these anomalous

freedecays.



Chapter 2

Models

In this chapter, we will now propose and test several models:

1. A vortex friction model, based upon the pinning and depinning of vortices,

which will be seen to be incomplete and unable to fully explain the observed

behavior.

2. A modified vortex friction model including an additional energy associated

with vortex creation, which will be seen to provide a much better explanation

for the observed behavior and enable the derivation of a number of vortices

involved in the dissipation. This number will be seen to be rather small

(approximately three,) which is contrary to the predictions of previous work

on this topic.

3. A mutual friction-based vortex dissipation model, which will be shown to

be inconsistent in several aspects with the observed behavior.

4. A viscous-type drag model with an arbitrary dissipation mechanism, which

15



CHAPTER 2. MODELS 16

will be seen to be inconsistent with the observed behavior.

All of these models are based upon experimentally well-established quantized vor-

tex phenomena in bulk superfluid helium and are simply extensions of these ob-

served bulk vortex properties into the adsorbed film case. This chapter will test

these various vortex dissipation models for their consistency with the observed

anomalous freedecays discussed in the previous chapter.

2.1 Friction Model

In an article published in 1991 Fred Ellis and Hai Luo posited that the critical

velocity phenomena observed in the free decays were the result of the pinning

and unpinning of vortices from the resonator substrate. This process is analogous

to a classical friction force and may be modeled as such. Ellis and Luo were

motivated by the fact that free decays that display “bulge-like” non-linearities

on a logarithmic amplitude vs. linear time plot appear to be linear on a linear

amplitude vs. time plot. This phenomenon can be seen in Figure 2.1.
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Figure 2.1: An example of an anomalous free decay, displaying a “bulge-like” non-

linearity on semi-logarithmic (top) and linear (bottom) scales. Note the straight

line on the linear plot.

In this first and simplest “friction model,” below critical velocity flow in the

film the vortices are strongly pinned to surface roughness or defects. As flow

velocity increases above critical, the Magnus force is sufficient to depin the vortices

from the defects. The vortices now drag upon the substrate dissipating energy

(proportional to the displacement) as they encounter defects on it. This can

be seen as the analog of a friction force, not unlike dragging an object along a

cobblestone street. Along with the return of the oscillating flow to sub-critical

velocities the vortex pins itself to a substrate defect and the pinning/depinning
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process begins again. This is illustrated in Figure 2.2.

Figure 2.2: Illustration of the pinning, depinning process.

Within the article, Ellis and Luo calculated that for a particular decay this

friction-like force would need to have a strength of 1.3×10−9 N/m2. [6] In keeping

with this previous work, the first model considered was based upon this frictional

force. The model was used to discover three important characteristics of the

anomalous free decays:

1. To find how a vortex moves in a sinusoidal flow.

2. To find the energy dissipated vs. amplitude of the oscillating flow.

3. To use the model’s dissipation to find the decay of the resonance.
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It was assumed that the pinning force was equal to some constant f◦ determined

by the averaged pinning strength of the substrate defects, resulting in a force given

by:

fdrag = f◦(−v̂v) (2.1)

where f◦ is the strength of the friction force and v̂v is the direction of vortex mo-

tion. First, we sum this force with the Magnus force in the usual Newtonian way

employing the no-net-force assumption that is regularly used with superfluid vor-

tices. While the vortices may be treated as objects due to the extent of their cores,

these cores are presumed to be absent of fluid and to have very thin walls. The

superfluid vortices are thus presumed to be massless and hence due to Newton’s

Second Law, the net force upon them, Fvortex, must be 0. With this assumption,

the summation becomes:

Fvortex = ρκh (vs − vv)× k̂ − f◦v̂v = 0 (2.2)

This allows us to find the components of the velocity perpendicular and parallel

to the direction of flow:




vv‖

vv⊥



 =









1−

(
vc

|vs|

)2

(
vc

|vs|

) √
1−

(
vc

|vs|

)2



 |vs| if |vs| > vc




0

0



 if |vs| < vc

(2.3)

where vc is the magnitude of the critical velocity and vs is the flow velocity.

We can then integrate to find the average power dissipated by a single vortex
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using the following equation:

PAV =
1

T

∫ T

0
fdrag · vvdt (2.4)

where T is the period of oscillation.

We introduce the scaling A = η/ηc = |v| /vc. This greatly simplifies matters

as now all amplitudes η will be scaled to the critical amplitude ηc, a quantity that

can be read directly from the experimental data. Using this scaling, the equation

takes the form of the curve seen in Figure 2.3.

Figure 2.3: Scaled power dissipated as a function of amplitude A scaled to the

critical amplitude.

This average power PAV can be multiplied by a number of vortices per area n
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and decomposed in the following manner:

W (A) = PAV n (2.5)

This W (A) can then be combined with a background exponential dissipation

to produce the total energy lost in the wave:

dE(A)

dt
= −W (A)− ω◦E(A)

Q◦
(2.6)

E(A) is the energy in the wave, which is twice the kinetic energy, given by:

E(A) =
1

2
ρhv2

cA
2 (2.7)

Substituting this energy into Equation 2.6 and solving for dA/dt results in:

dA

dt
=

f◦vcn

π

(
1

2
ρv2

c

)−1 I(A)

A
− ω◦

2Q◦
A (2.8)

where I(A) =
∫ π

2

sin−1( 1
A)

√
A2 sin2 φ− 1 dφ, a factor that is simply a scaled version

of Equation 2.4.

We now introduce some scaling to simplify this equation, letting:

α =
2f◦n

πρhvc
(2.9)

τ = αt (2.10)

γ =
ω◦

2Q◦

1

α
(2.11)
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It becomes clear now through dimensional analysis that α is some type of rate

constant and γ is a scaled decay constant. By employing this scaling Equation

2.8 reduces to:
dA

dτ
= −I(A)

A
− γA (2.12)

This is a separable differential equation, so separating and integrating results in:

τ = −
∫ A

1

A

I(A) + γA2
dA (2.13)

Note from the above choice of limits that τ = 0 at A = 1, the critical amplitude.

This allows us to easily identify the critical point both in scaled amplitude and

time. Inverting this equation produces the amplitude Y as a function of τ :

Y (τ) = Yc Amp(γ, τ) (2.14)

Amp is a numerically defined function involving the two non-analytic integrations

of Equation 2.13 and the inversion from τ(Y ) to Y (τ). The critical amplitude

Yc is now in Y scale units (normally nanometers.) In order to produce a usable

fitting function, we make the final substitution τ = α(t− t◦) where t◦ is now the

origin of laboratory time. This results in the final fitting function:

Y (t) = Yc Amp(γ, α(t− t◦)) (2.15)

This function most certainly has the ability to produce graphs that qualita-

tively resemble those of the target data. This qualitative resemblance is clearly

illustrated in Figure 2.4.
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Figure 2.4: Output of the Y function on a logarithmic scale, with time scaled to

the critical time. The graphs correspond to varying values of γ.

This function was fit to the experimental data using the three parameters Yc,

α, and t◦. The scaled background decay constant γ was fit by hand separately to

the portion of data below the A = 1, τ = 0 critical point. This was an effort to

maintain the computation time within reasonable bounds.

The laboratory data was extracted from the original dot-matrix printed paper

traces via a pixel averaging methodology. The paper graphs of interest were first

scanned at 300dpi. The images were then aligned and cropped to the middle
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pixels of the axes using photo-manipulation software. The remaining axis pixels

and any imperfections such as smudges or paper-yellowing were then removed.

The resulting image was then converted to a monochrome image using a 50%

brightness threshold. That is, all pixels above 50% in brightness were converted

to black and all below that threshold were converted to white. Subsequently

each column (or binned group of columns) of pixels was averaged to produce a

single data-point centered within the trace line which was then scaled based on

its vertical position in the image to produce an actual datapoint value for that

point. This procedure was necessary as commercially available data-extraction

software was unable to produce accurate traces due to the multiple pixel width of

the trace line and the sometimes significant noise present in the traces. Inherent

in this procedure is that averaging over noise is a completely automated process,

removing the human intervention required by the commercial software.

A nonlinear, least-squares Levenberg-Marquardt fitting routine was used to fit

the laboratory data to this function. Unfortunately, there was a lack of sufficient

parameters to properly fit the curves in question. This can be seen clearly in

Figure 2.5, the graphs of two separate data sets fit using this model. These

results are typical of the fit curves produced by this model. The top graph of the

figure exhibits one common issue with these fits, as the low amplitude behavior

corresponds quite well to the data sets, but the high amplitude regime lacks

sufficient curvature to match the actual data. The lower graph of the figure is

able to match the high amplitude behavior reasonably well, but the low-amplitude

regime fails to match the actual data.
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Figure 2.5: Illustrations of the best fits using the friction model of two separate

data sets. The dotted data sets are the actual data to which the solid lines are

fitted. Note the lack of correspondence between the fit curves and the data.
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Attempts were made to determine whether there was a technical explanation

for these issues including fitting the logarithm of the data, adjusting the conver-

gence tolerance of the fitting algorithm, and extensive attempts to improve the

fit by manually manipulating the parameters. The conclusion was reached that

no improvement of the fit curves was obtained through any of these exercises

and that the model itself must be fundamentally incomplete as it lacks sufficient

physics to properly fit this data. As one can see in Figure 2.5, as discussed above

there is no way to simultaneously achieve both the necessary curvature for the

high-amplitude regions and a sufficiently sharp transition at the critical point.

The friction model can produce either curvature or kink, but not both, so some

fundamental piece of the physics must be missing.

2.2 Dissipation Function

It was realized that it would be possible to derive numerically a dissipation func-

tion from the experimental data without reliance on a particular model, such as

the friction model discussed above. We begin with a generalized free decay rela-

tionship with a background dissipation based on a quality factor Q◦ and an added

dissipation term W (A):
dE

dt
= −W (A)− ω◦E

Q◦
(2.16)

where E is the total energy of the third-sound wave and ω◦ is the wave frequency.

Letting E = αη2 and making appropriate substitutions allows us to reach the

following form:
dη

dt
= − W

2αη
− ω◦η

2Q◦
(2.17)
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Dividing through by the critical amplitude ηc and solving for the added dissipation

W (A) results in:

W (A) = 2αAη2
c

(
dA

dt
+

ω◦A

2Q◦

)

(2.18)

The only wrinkle remaining is to solve for α, which is dependent on resonator

geometry, oscillation mode, and film conditions. The total energy of the third

sound wave is two times the kinetic energy, given by:

E = s
1

2
ρhav̄2 (2.19)

Here ρ is the density of 4He, h is the mean thickness of the film, a is the area of the

cell, and v̄2 is the mean-square velocity averaged over the cell. We first convert our

amplitude data η into a velocity v by multiplying by the third sound propagation

speed c3 and dividing by the film thickness h. We perform the averaging by

multiplying by the root-mean-square average of the standing-type wave function,

JRMS for the particular mode, giving a mean-square velocity average like so:

v̄2 = c2
3

η̄2

h2
=

(
c3

η

h

)2

J2
RMS (2.20)

Finally, s is a parameter that denotes whether the wave is of the standing (s = 1)

or traveling (s = 2) type. Setting Equation 2.19 equal to αη2 and solving for α

gives for the traveling wave case:

α = J2
RMS

ρac2
3

h
(2.21)
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where c3 is the third sound speed and JRMS is the average of the standing wave

function, given by:

J2
RMS =

1

πx2
mn

∫ xmn

0

∫ 2π

1
Jm(x)x dxdφ (2.22)

=
1

2

[

1−
(

m

xmn

)2
]

Jm(xmn)2 (2.23)

Here xmn is the nth zero of the derivative of the Bessel function of the first kind

Jm. The integer numbers m and n designate and describe the particular third

sound mode of interest, as m is the azimuthal wave number and n is the radial

wave number.

Now, all parameters in the dissipation equation (Equation 2.18) are known.

The scaled amplitude A can be extracted from the data by fitting the data to an

appropriate function and then substituting that fit function and its derivatives

into the dissipation equation. This fitting of the data is necessary because using

the data directly in Equation 2.18 would result in unmanageable amounts of noise.

This is due to the necessity of taking a derivative dA/dt of the already noisy data.

The function to which the data was fit, overcoming this issue, was:

d(a, β, x◦, t◦, t) = exp

[
−(t− t◦)ω◦

2Q◦

]

+






a(t◦ − t) + β − β
1+ t◦−t

x◦
if t > t◦

0 otherwise

(2.24)

This function incorporates the known background damping in the first term. The

piecewise-defined second term was employed because the first two terms a(t◦−t)+

β of the t > t◦ part is linear, corresponding to the approximately linear behavior
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of the high-amplitude region. At these high amplitudes, the third term − β
1+ t◦−t

x◦
is

rather small owing to a large denominator. As the amplitude approaches the kink

point at t = t◦ the denominator of the third term decreases drastically, increasing

its influence upon the linear and providing the appropriate curvature. After the

critical point at t = t◦ there is only background damping present, as reflected in

the second case of the piecewise function. This function provides rather good fits

to the experimental data as can be seen in Figure 2.6.

Figure 2.6: Illustration of the fit between Equation 2.24 and actual data displaying

the curved transition between slopes. The dotted data sets are the actual data to

which the solid lines are fitted.

An example of the resulting power dissipation functions is shown in Figure
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2.7. Note the discontinuity that is characteristic of this function. At A = 1,

the critical amplitude, the power jumps up to nearly 4 × 10−15 Watts and then

decreases rapidly before slowly rising again, only reaching the same level as at

A = 1 just before A = 5, nearly five times the critical amplitude.

Figure 2.7: Graph of a power dissipation function derived directly from exper-

imental data. The dotted curves bracketing the data are the upper and lower

bounds of error.

When compared with the known dissipation of a given model, a number of

vortices can be extracted by simply dividing the experimentally derived dissipation

function by the theoretical dissipation of a model for a single vortex. This was

performed using the friction model’s dissipation for one vortex (derived earlier in
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Equation 2.8,) given by:

Wfriction(A) =






4πh̄c23η2
c

m4h

∫ π
2

arcsin 1
A

√
A2 sin x2 − 1 dx if A > 1

0 otherwise
(2.25)

The N number of vortices in the cell produced by dividing the experimental

data by this equation is shown in Figure 2.8. Note that the number of vortices

is notably non-constant, increasing multiple orders of magnitude in the region

between A = 2 and A = 1. At higher amplitudes the number of vortices appears

to level off at approximately 16. If anything, one would expect more vortices at

higher amplitudes, not fewer. One way to remedy this non-physical result is to

introduce some form of additional energy dissipation that is not accounted for in

the friction model, as is done in the following section.
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Figure 2.8: Graph of the number of vortices in the cell derived from experimental

data and the friction model.

2.3 Creation Energy

This additional energy term was introduced in an effort to attain a relatively con-

stant number of vortices throughout the wave cycle. This additional dissipation

above and beyond that predicted by the friction model holds promise to tame

the many orders of magnitude spikes in the number of vortices predicted by the

friction model alone as shown in Figure 2.8. It is also known that these vortices

have an energy (with both kinetic and potential terms) associated with them.

While this addition to the model is simply speculative as far as the mechanisms

at work are concerned, we will see that this additional bit of physics appears to
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fit the observed data quite well. Numerically, this added term was included in the

full-wave energy function from before:

dE

dt
= −W (A)− ω◦

Q◦
E − u◦

dN

dt
(2.26)

where the first two terms are as in Equation 2.16. The new term is the u◦
dN
dt

where u◦ is an energy parameter and dN
dt is the rate of change of vortex creation.

The entire term can be expressed as Wc, the “creation energy.”

Manipulating the equation as in the previous section allows us to produce a

dissipation function and number of vortices. This results in an equation for the

dissipation given by:

W◦ = −2αAη2
c

(
dA

dt
+

ω◦
2Q◦

A

)

−Wc (2.27)

The number of vortices that results is given by:

N(A) =
W◦(A)

W1(A) + ω◦
π u◦

(2.28)

where W1 is the dissipation of the model of interest, in this case the friction model.

A simple hand fit of the data was used at first to derive a value for u◦. The

only criterion for these values was to reduce the number of vortices with amplitude

as much as possible. As flat a curve as possible was the goal. The results of this

effort can be seen in Figure 2.9. As one can see in this figure, the bottommost

of the graphs, corresponding to u◦ = 8 × 10−19 J, displays the smallest deviation

from a constant number of vortices.
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Figure 2.9: Number of vortices vs. scaled amplitude on a semi-logarithmic plot

for varying values of u◦. The upper and lower functions are the upper and lower

bounds of the error.
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It is this flattest fit that implies that for the friction model, there must be

approximately three vortices each with a dissipation of 8 × 10−19 J beyond that

already accounted for in the friction model. This number of three can be seen from

the high amplitude limit of the graphs, at which there should be no variation in the

number of vortices involved. The value of three is an average based on applying

this procedure to multiple data sets displaying the bulge-like anomaly. This is a

crucial outcome of the investigation as it implies that these anomalous dissipations

are the result of a very small number of vortices. Before this point, the number

of vortices involved in these additional dissipative processes was not known. This

energy value u◦ = 8 × 10−19 J corresponds to the energy in an area of the total

wave of 2.885 × 10−9 m2 or approximately a 60µm diameter circle at the critical

velocity.

To give a point of comparison for this value for u◦ we must turn to the physics

of a likely cause for this creation energy term. It was postulated that this addi-

tional dissipation might be associated with the creation of vortices within pockets

of bulk helium liquid trapped by defects in the experimental cell, either within

the substrate or the epoxy joint joining the outer glass plates of the cavity cell

resonator. The exact microscopic processes behind vortex nucleation in superfluid

helium are not well understood, but one theory is that the process of vortex ring

formation is started by thermal excitations, in this case in the pocket of bulk fluid,

and then progresses in size due to the film flow until a certain critical energy is

reached and the vortex ring breaks into a vortex/anti-vortex pair (an inherently

lower energy state.) [1, 2, 7] Figure 2.10 provides an illustration of this process.
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Figure 2.10: Illustration of the vortex nucleation process inside a pocket of bulk

fluid.

Deriving a creation energy from this model requires the energy of a pocket of

bulk fluid in the film. This kinetic energy is the vortex creation energy. For a

pocket of non-film fluid of size L, the kinetic energy is given by: [2]

E(L) =
1
2

(
2π h̄

m4

)2
L ln

(
L
a◦

)

k
(2.29)

Here, m4 is the mass of a 4He atom, 6.646×10−27 kg, a◦ is the width of a superfluid

vortex core, 1.3 Å and k is the Boltzmann constant. L is related to the thickness

of the film h via the relationship:

h =

(
kTvL

γ

) 1
3

(2.30)

where Tv is the van der Waals force constant in Kelvin and γ is the surface tension,

This allows us to find the creation energy quite simply and directly from the
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film thickness h, a known experimental quantity. The creation energy u◦ derived

for the same experimental data set as in Figure 2.8 is 8.201×10−21 J. This results

in the graph shown in Figure 2.11.

Figure 2.11: Number of vortices vs. scaled amplitude on a semi-logarithmic plot

for u◦ = 8.201× 10−21 J as determined by the vortex ring nucleation calculations.

The upper and lower functions are the upper and lower bounds of the error.

As we can see, the two values for u◦ are not in agreement. In fact, they differ

by two orders of magnitude. As stated earlier, the processes of vortex nucleation

in superfluid are not well understood and this may account for the discrepancy.

The mechanism responsible for the creation of vortex rings in these pockets may

not fully account for the total energy required to create vortex pairs. Hence, we

conclude that pocket vortex creation is not sufficient.
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2.4 Viscous Model

We turn now to the other type of anomalous free decays, the “kink” type. In

this variety of anomalous free decays, the data displays one characteristic decay

constant Q1 at high amplitudes and then transfers to a decay with another decay

constant Q◦ at some critical amplitude, without displaying much in the way of

transition behavior. It is this absence of a transition that differentiates these free

decays from those analyzed thus far in this chapter. Referring between Figure 2.1

and Figure 2.12 quickly makes this distinction clear.

Figure 2.12: An example of an anomalous free decay, displaying a “kink-like”

nonlinearity on a semi-logarithmic scale.

These types of decays require another model for the dissipative effects. This

need can be seen by referring to Figure 2.4. There is no value of the parameter γ

that would provide both sufficiently linear transition behavior and an appropriate

slope corresponding to Q◦ at sub-critical amplitudes.
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The new model is based upon a viscous drag force that is a result of mutual

friction between the vortex and and the gas of thermal excitations that is the

normal fluid component of the two-fluid model. [1] Like most drag forces, this one

is also proportional to the velocity of the vortex with an unknown proportionality

constant γ:

fdrag = −γ (vv) (2.31)

As before, this force may be summed with the Magnus Force in the Newtonian

way (with the no-net-force assumption):

Fvortex = ρκh (vs − vv)× k̂ − γ (vv) = 0 (2.32)

The only missing piece of information for this model is a value for the coefficient

γ. The entire model is based upon the phenomenon of “mutual friction,” this

viscous drag that results from the interaction between the normal fluid component

of the fluid and the vortex. This is a well documented property, first proven by

Hall and Vinen in 1956. They derived experimentally the coefficient for this force

to be: [1]

γ = B
ρsρn

2ρ
(2.33)

where B is a constant of proportionality, equal to 4/3 in the regime this data

was taken, ρn is the density of the normal fluid component, and ρs is the density

of the superfluid component. As was found by Andronikashvili in 1946, below

1 K the superfluid component is nearly all of the fluid density, so it is an excellent

approximation to say that ρs/ρ = 1. [1] The density of the normal fluid component
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of the fluid is given by: [1]

ρn = ρ◦

(
T

1 K

)1.8

(2.34)

where ρ◦ = 0.0041 and ρ = 0.6 kg
m3 . This immediately begins to cast doubt upon

the validity of this model as ρn has temperature dependence and my analysis and

previous work have never seen any temperature dependence in the anomalous free

decays or decay constants Q.

The same process of analysis as was employed for the friction model was applied

to this model. The data was fit to Equation 2.24, as this functional form had

sufficient adjustability to accommodate these types of anomalous free-decays as

well. Figure 2.13 shows a typical fit, which is qualitatively quite good.

Figure 2.13: Illustration of the fit between Equation 2.24 and actual data display-

ing the abrupt kink-like transition between decay constants. The dotted data sets

are the actual data to which the solid lines are fitted.
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We then calculate a numerical dissipation function for this data, finding a total

dissipation for the cell as shown in Figure 2.14.

Figure 2.14: Total power dissipation in the cell modeled upon viscous drag as a
function of the scaled amplitude A.

In the same way as before, an analog to Equation 2.25 was developed to

describe the dissipation of a single vortex in this flow. A number of vortices was

derived via the the same methodology. Dividing the total power dissipation in

the cell by the amount of power dissipated by a single vortex results in a number

of vortices, which is shown in Figure 2.15. As we can see, yet again, the number

of vortices is not constant. While it does not range to the same degree as it did

in the friction model calculation, there is still some non-constancy of the number.
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Figure 2.15: Graph of the number of vortices in the cell derived from experimental

data and the viscous model on a semi-logarithmic scale.

What is highly important to take notice of is the fact that this is an extremely

large number of vortices, on the order of 1031. In fact, if all of these vortices had

typical vortex core sizes in superfluid helium film, a◦ = 1.3 Å, the area of the

cores alone, without any extent beyond them, would be 25 orders of magnitude

larger than the area of the experimental cell itself. It is obvious that this model

is unrealistic for the situations we are attempting to model. In addition, we see

that the viscous model predicts more drag at higher velocities, which does not

conform to the observed behavior of the data.

For the same motivations as before, a creation energy term was introduced in

an attempt to improve the constancy of the number of vortices. A creation energy
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of u◦ = 8× 10−19 J was employed. This value was chosen to maintain continuity

with the previous model, under the logical assumption that the amount of energy

required to create a vortex would be similar. The results of this calculation are

shown in Figure 2.16. One can see that this function marginally exhibits a smaller

variance of number of vortices than that without a creation energy (Figure 2.15.)

What is unchanged, however is the exceptionally large number of vortices, yet

again placing this model as impossible.

Figure 2.16: Graph of the number of vortices in the cell compensated with a

creation energy term of u◦ = 8× 10−19 J derived from experimental data and the

viscous model on a semi-logarithmic scale.

It has quickly become clear that the viscous “mutual friction” based model

cannot be an explanation for the phenomena observed due to the lack of observed
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temperature dependence and an implausible number of vortices required to be

participating in the dissipative motion.

We will now propose one final modification to this viscous damping model.

Instead of having the proportionality coefficient γ in Equation 2.31 determined

by the known “mutual friction” force, we will instead make this coefficient a freely

adjustable parameter. We will not consider what the physical cause of this force

might be, but instead simply say that it is an as yet undiscovered force. The

mechanics of the model would be unchanged from the “mutual friction” model, so

we may simply hand-fit a value for γ. Doing this, we find that the flattest curve

for the number of vortices is given by the value γ = 1×10−20. This curve is shown

in Figure 2.17.

Figure 2.17: Graph of the number of vortices in the cell derived from experimental

data and the viscous model with a freely determined γ on a semi-logarithmic scale.
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What is quickly realized if one adjusts the value of γ is that there is no no-

ticeable variation in the number of vortices curve between γ = 1 × 10−20 and

γ = 0, so in order to find a relatively constant and reasonable number of vortices

involved in the dissipation there must be in essence no dissipative force, which

would result in no anomaly in the freedecays. This fact casts great doubt upon an

explanation for the “kink-like” freedecays from a force that relies upon a simple

proportionality with the velocity.

2.5 Summation

As was made clear in the section on the friction model, the theories advanced

thus far for the additional dissipation seen in anomalous free decays are unable to

completely fit the experimental data that has been seen. The “mutual friction”

based model requires numbers of vortices that are impossibly large to obtain the

needed dissipations and hence must be discarded.

For the friction model, there is some fundamental element of the physics miss-

ing. This is seen in its inability to fit the experimental data sets and evidence of

a wildly shifting number of vortices when modeling the dissipation based on the

models alone.

The introduction of a creation energy term, possibly tied to vortex ring nu-

cleation in pockets of bulk fluid, helps to maintain a better constancy of vortices

in the system. It also allows one to conclude that the dissipations are due to a

rather small number of vortices (approximately three for a typical bulging non-

linear free decay) created at defects as opposed to de-pinned from them (hence
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the need for the creation energy u◦.) This is a valuable conclusion as the number

of participating vortices was not previously known.



Chapter 3

Vortex Positions

3.1 Introduction

In the previous chapter a conclusion was reached that there are a small number

of vortices taking part in the dissipative process. That conclusion is supported

in this chapter, and further, the vortex positions within the cell are examined.

Note that this represents a reversal from the previous 1991 paper of Ellis and

Luo. They predicted that pinned vortex densities of 103/ cm3 to 105/ cm3 would

be required to produce anomalous decays of the type seen. [6]

This verification was made via a calculation of the critical velocities for each

vortex of an arbitrary array of vortices placed within the experimental cell. The

observed free decays will be shown to be inconsistent with a uniform distribution

and the vortices will be found to be constrained to a small number of defect

sites (probably one) within the cell. This is closely tied to the geometry of the

resonant modes within the cell and hence a brief consideration of these is necessary

47
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to proceed.

3.2 Resonator Modes

We must keep in mind that third sound waves are little more than shallow wa-

ter waves driven in superfluid helium. As a result, they display normal modes,

dictated by specific resonant frequencies ω which correspond to wave numbers k.

Due to the circular nature of the resonating cavities of the third sound oscilla-

tors, the derivation of these modes can be somewhat complex. There is no need,

however, to go through the full derivation of the resonator normal modes in order

to grasp the significance of the modes and their importance to the determination

of the positioning and number of vortices in the experimental cell. A qualitative

understanding will suffice for the reader to grasp the procedure employed.

The third sound resonators from which this data was taken consisted of two

glass microscope slides separated by a distance of typically 10 millimeters. A

circular cavity was created between the two slides by the wicking of epoxy adhesive

into the gap until the cavity was of a specific radius a, typically between 6.05 and

6.15 millimeters depending on the particular experimental cell.

The structure of the modes in these cells is dictated by Bessel functions of the

first kind, Jm. These Bessel functions are the solutions to one of the third sound

equations of motion:

∇2η + k2η = 0 (3.1)

The nth root of the derivative with respect to x of the mth Bessel function is given
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by the value χmn, such that:

d

dx
Jm (χmn) = 0 (3.2)

where (m, n) are positive integers dictating the quantization of the modes. These

derivative zeros are required to impose a boundary condition, namely that the

waves from the top and bottom of the resonator cavity must have the same deriva-

tive at their junction, that is dη/dr = 0 at r = a (the resonator radius.) Applying

this boundary condition defines our wave number k:

k = χmn/a (3.3)

There are several constants required for the eventual expression of the mode

structure. The density of 4He is designated as ρ and equals 145 kg/ m3. The

static thickness of the film, h◦, is determined by the experimental parameters of

the particular film of interest and typically ranges from 2 to 7 nm. The third sound

speed, c3, is also determined by experimental parameters and typically ranges from

5 to 20 m/ s. The mode amplitude, η, is dependent on the driving force and is on

the order of 1 Å. The dispersion relation is linear, given by ω = c3k. The van der

Waals acceleration is given by g.

Now, all that remains to find the structure of these third sound resonator

modes is to solve (along with boundary conditions) the third sound equations of

motion, the following set of coupled equations:

∇2η + k2η = 0 (3.4)
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dv

dt
= −g∇η (3.5)

As in most wave systems, the third sound waves come in two varieties: standing

and traveling. All of the anomalous free decays studied were of the standing wave

variety, as was determined via a mode splitting analysis, so these will be the ones

examined in this study. [5] Keeping in mind that these third sound waves are

two-dimensional flows, the velocity field is expressed in polar coordinates and is

given by: 


vr

vφ



 = c3
η

h◦




− 1

k
d
dr [Jm(kr)] cos(mφ)

m
krJm(kr) sin(mφ)



 sin(ωt) (3.6)

3.3 Theoretical Distributions

Allow us to picture a third sound resonator of the type described with many

vortices distributed throughout its film. A third sound wave is induced in the

superfluid by a driving force (in the case of the experimental system electrostati-

cally.) The driving force is turned off and a free decay of the wave begins. As this

decay progresses, the vortices eventually reach some critical velocity at which some

process occurs which changes the dissipation factor. The wave in the third sound

resonator is not that of a one-dimensional plane wave, however. It is dictated by

Equation 3.6. So, assuming all the vortices share the same critical velocity, not all

of them will reach it at the same point. For the transition from super-critical to

sub-critical flow to be abrupt, as was seen in the anomalous free decays, they must

all reach the critical velocity within a narrowly defined window. A methodology

was developed to test whether it was possible to have this small spread of critical
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velocities with a large number of vortices uniformly distributed within the cell.

We begin with a theoretical distribution of vortex positions. A pseudo-random

number generator creates a matrix of 1000 x and y positions within a square

with side length a, the disk radius. The (x, y) pairs that fall outside of a circle

of radius a are discarded, leaving a circle with a uniformly distributed array of

vortex positions. These (x ,y) coordinates are then expressed in polar coordinates

to allow the easy application of the velocity field functions. Figure 3.1 shows a

typical distribution of a random vortex array within the cell.

Figure 3.1: The random vortex distribution used to simulate the behavior of

critical velocities across the cell.

The time dependence of the velocity equation (Equation 3.6) can be easily

eliminated by restricting ourselves to the maximum of the wave structure, that

is where sin(ωt) = 1 (ωt = π/2.) In doing this, we assume the distribution of
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peak velocities will reflect the distribution of critical velocities to be applied to

the plane-wave result. The magnitude of the velocity field at a point is then easily

found via the simple Euclidean distance formula:

|vpeak(r,φ)| = c3
η

h◦

√√√√
[

−1

k

d

dr
[Jm(kr)] cos(mφ)

]2

+
[
m

kr
Jm(kr) sin(mφ)

]2

(3.7)

Note that the prefactors (c3η)/h◦ simply set the scale for the particular film pa-

rameters. Setting these factors equal to one at the critical velocity allows the peak

function to be divorced from any particular experimental conditions, giving our

method some broad application. In the end, the following function was applied

to the distribution of vortex positions:

|vcritical(r,φ)| =

√√√√
[

−1

k

d

dr
[Jm(kr)] cos(mφ)

]2

+
[
m

kr
Jm(kr) sin(mφ)

]2

(3.8)

The result is a velocity for each vortex. We plot these velocities on a histogram

in order to evaluate their distribution as shown in Figure 3.2. This figure displays

only the first three modes, the (m = 1, n = 1), (m = 2, n = 1), (m = 3, n = 1).

These modes are the most common observed within the cell and make up nearly

all of the anomalous free decays. This histogram data was also calculated for

the (m = 5, n = 1) mode, but the conclusions were unchanged. The (m = 4,

n = 1) mode was experimentally unobservable due to the detector geometry of

the experimental cell.
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Figure 3.2: Histograms of vortex velocities for a random distribution of 10000

vortices.
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In order to evaluate the physical information being displayed here, we must

look at the physical structure of the mode. Figure 3.3 shows the structure of

the (m = 3, n = 1) mode, the most common in the experimental data. The top

graph is a contour plot of the velocity field for this mode. The bottom displays the

structure of the height oscillations of the mode. Note that both of these graphs are

accurate qualitative representations only and are not to be taken as quantitative.

Figure 3.3: Illustration of the mode structure for (m = 3, n = 1). The upper graph

displays a contour plot of the velocity field and the lower displays the structure

of the height oscillations of the mode.
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Both these graphs clearly display the nodal structure of this mode. In the

bottom graph, the height fluctuations are noted by the difference in colors. All

the blue regions have the same amplitude as do the red ones for any stationary

moment of the wave. In the (m = 3, n = 1) the fluid is sloshing back-and-forth

between these regions throughout the wave cycle. It is logical, however, that

the area of maximum flow velocity would be in between these zones. This area

would correspond to the upper maxima on the graph. The other peak has a lower

velocity, but a larger area, hence the larger peak.

What is important to note is that all of these curves are rather broad and while

they do display maxima, the spread is still significant. As was discussed earlier,

for a large number of vortices to produce an abrupt, sharp transition of the types

observed, most vortices in the cell must make that transition at a similar time.

This is clearly not the case for these waves: as some vortices make the transition

the majority are still sub-critical. Hence, for a sharp transition to be observed,

it must be the result of vortices concentrated within the same, rather narrow

bands of similar flow velocity. This implies that the vortices are concentrated on

a few discrete substrate defects and not scattered throughout the cell. We may

predict that this small number of defect sites is probably in actuality one as it is

highly unlikely (but possible) that the necessary conditions for a sharp transition

described above could be met by multiple defect sites.

This data also supports the assertion of a small number of vortices involved

from the previous chapter. It would be impossible to cluster a large number of

vortices solely within these narrow bands. The isolated defects would quickly

become saturated with vortices and lead to the annihilation of vortices with each
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other. There must be a small number of vortices pinned to these isolated defects.

3.4 Summation

The analysis here supports the conclusion of the previous chapter that a small

number of vortices (found to be on the order of 3) must be involved in the dis-

sipative motion. This velocity analysis over a theoretical distribution of vortices

resulted in the additional assertion that these vortices must be pinned to a few,

discrete substrate defect sites lying within regions of similar velocity. We now

know not only the number of vortices involved, but their physical distribution

within the cell as well.



Chapter 4

Conclusion

4.1 Vortex Energies

We now return to the creation energy found in the Models chapter. We found

that the creation energy of 8 × 10−19 J found in the number of vortices analysis

was inconsistent with a process of vortex creation based upon the splitting of a

vortex ring in a pocket of bulk fluid into a vortex/anti-vortex pair as the energies

deviated by several orders of magnitude. What we now wish to do is to disregard

the method of creation and look only at the energy involved with the vortices

themselves.

Oliver Ryan, a member of the Quantum Fluids Laboratory, derived the energy

of a superfluid film vortex in his 1992 undergraduate thesis. This derivation

includes the effects of kinetic energy due to the rotating fluid, potential energy

due to the van der Waals attraction with the substrate, and surface energy terms.

It hence should be highly accurate and more complete than the commonly used

57
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cylinder model.

The only inputs that are required to find an energy from this model is the

film thickness h (experimentally known for each film,) and the diameter of the

vortex. In order to find these diameters, we must consider that a superfluid

vortex in a film will spread to encompass the maximal area possible without

overlapping its neighbors. So, roughly, if we have three vortices, each will have

a diameter of the radius of the cell a which for the experimental resonators with

which we are concerned varies between 6.05 mm and 6.15 mm. Figure 4.1 provides

an illustration of the vortices within this cell.

Figure 4.1: Illustration of the positioning of three vortices inside an experimental

resonator cell.
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Keeping this in mind, the diameter of each vortex b is approximated as:

b ≈
√√√√

1
(

# of vortices
cell area

) ≈
√

πa2

3
≈ a (4.1)

And from this we may find the energy of a single vortex from the model:

E1 =
(
57

K

nm

)
(6 nm) ln

(
b

1000

)

= 4000 K (4.2)

So, for three vortices, we find the energy to be:

E3 = 3E1 = 12000 K = 1.66× 10−19 J (4.3)

We note that this value is 14 times smaller than the creation energy for three

vortices, 3u◦ = 2.4× 10−18 J. So, we must increase the energy associated with the

vortices. One option would be to increase the diameter of the vortices, but this

is not feasible due to the fact that they are already at their maximal size. There

is no other way to increase the energy associated with each vortex, so we must

have more vortices involved in the dissipative action, but with more vortices each

vortex must dissipate less. This requirement for more dissipating vortices with

each dissipating less energy leads us to propose a final model for future work.

4.2 Kelvin Wave Heating Model

Superfluid vortices have the ability to transmit oscillations up and down their

cylindrical cores. These take the form of helical deformations of the vortex lines
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that make up the core of the vortex. [2] First written about by Lord Kelvin in

1880, these Kelvin Waves result in the loosening of pinned vortices at a lower force

than is required in their absence. This phenomenon has been directly observed in

bulk 4He and hence should be expected to also be observed in thin films. [8] In

this model the vortices exhibit two critical velocities as shown in Figure 4.2. They

are initially created at a critical velocity on the order of vcc = 1 m
s . They then drag

upon substrate defects as in the previous friction model. This dragging, however,

pumps Kelvin Waves up the core of the vortex, in essence heating them. These

heated vortices would exhibit a critical velocity on the order of vch = 0.01 m
s and

the drag due to their friction-like pinning and depinning force would be greatly

reduced. This is in keeping with the experimental data showing decreased pinning

in bulk vortices with Kelvin Waves present.

Figure 4.2: Illustration of the drag force vs. vortex velocity for the Kelvin Wave

model.
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This model appears to reconcile an ongoing issue with the previous models.

Our freedecays clearly exhibit critical velocities on the order of 0.01 m
s . The bulk

of work on critical velocities (outside the context of freedecays) in superfluid films

exhibit critical velocities on the order of 1 m
s . This model would seem to hold the

promise of reconciling these discrepancies and appears to be the most promising

path forward for future work on these superfluid vortices.

4.3 Conclusion

This thesis set out to test the compatibility of vortex drag dissipation with the

observed anomalous freedecay features. The preceding work has resulted in several

new conclusions about these anomalous freedecays. First, it is clear that all of the

anomalous freedecays recorded take place in standing-wave modes.

Second, the friction-based vortex pinning/depinning model fails to completely

explain the observed “bulge-like” anomalous decays. The introduction of an ad-

ditional dissipation in the form of a creation energy term allows us to conclude

(motivated by our desire to not have many more vortices dissipating at lower am-

plitude) that only a small number of vortices, on the order of three, are involved

in the dissipative process based on this modified model.

Third, the mutual friction-based model for the “kink-like” anomalous freede-

cays is not a possible explanation, due to the impossibly large numbers of vortices

it predicts. In addition, it introduces a temperature dependence which was not

observed in the experimental data.

Fourth, this small number of vortices must be concentrated on a very small
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number of defect sites due to the structure of the resonant modes of the third sound

apparatus in order to obtain the observed behavior. We may further predict that

there is probably only one defect site on which these vortices are located.

Finally, it was determined that the creation energy found from the friction

model was too small for the number of vortices predicted and hence the Kelvin

wave heating model was proposed. This new model should provide fodder for

future work on this topic and appears to hold the promise of reconciling several

long-term discrepancies observed in third sound dissipation.

All of the models discussed in this work are based upon extensions of observed

vortex phenomena in bulk superfluid. What will be needed going forward in the

study of these anomalous freedecays and the physical mechanisms behind them are

experimental studies of the same sort as have been performed in bulk superfluid

helium upon vortices within the adsorbed films. This experimental verification

will likely prove to be crucial in the eventual full explanation of the observed

freedecay behavior and the proving or disproving of any model, including the final

Kelvin wave heating model proposed above.
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