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Chapter 1
CHAPTER 1

Introduction

Helium appears to present several exceptions to the laws of Classical Mechanics,
making it exceedingly interesting to physicists. The most easily understandable of its
unexpected behaviors is helium’s refusal to solidify at reasonable pressures, even at
absolute zero. All elements other than helium are solid below 4.2 K at any pressure.
*He, the most common isotope of helium and the subject of this thesis, Hquefies at 4.2
K but remains a liquid unless a pressure greater than 25 atmospheres is applied (figure
1-1). Helium is difficult to crystallize because the atoms have a low binding energy.
To form a solid, the helium atoms must be forced together against the zero point
motion so that they fall into the shallow, narrow potential well of the diatom (figure
1-2).

After the process was developed to liquefy helium in 1908, it was commonly used to
cool superconductivity experiments. The researchers, whose primary concern was not
their refrigerant, had noticed that the fluid stopped boiling and that odd leaks
appeared below 2.2 K, but they had left these phenomena unstudied until about 1938.
The first experiments by Kapitza and at the same time by Allen and Misener (1938)
demonstrated the existence of “superleaks,” where helium was capable of flowing
though submicron channels with no pressure difference between the ends. The lack
of a pressure head indicated that the fluid had no viscosity, unlike any other known
fluid. Kapitza coined the term “superfluid” that year. Later, persistent currents, flows
in the superfluid that never slow down, were discovered by Reppy and Depatie (1964)
in helium in a packed powder filled torus, and by Henkal et al. (1968) in helium films.

Both studies confirmed the lack of viscous drag.
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Chapter 1
Another experiment, by Allen and Jones (1938), took advantage of superleaks to

explore heat transfer in liquid helium. They found that helium prefers to have no
temperature variation in a film or in bulk. They constructed a superleak out of a tube
filled with packed powder and attached it to a reservoir of liquid helium. When they
heated the end of the superleak, the superfluid flowed through the leak to cool the
heated region. If more heat was applied, the superfluid squirted out of the leak as it
flowed faster to supply more cooling. Their result was dubbed the fountain effect,
and demonstrated what came to be called the thermomechanical effect. The latter is

important to our later discussion of waves traveling on superfluid films.

Helium makes a film on most substrates because the van der Waal’s attraction to the
substrate exceeds the surface tension of the fluid. Any fluid under similar conditions
will wet the surface it is touching and form a film, but in helium there are some
unusual side effects. Because the superfluid has no viscosity, it can spread much
farther. The film can form a siphon to reduce its potential, so that superfluid in a
bucket will make a film that can flow up and out of the container, and down the sides,
emptying the bucket. Researchers wishing to work with certain amounts of bulk
helium or specific film thicknesses must eliminate helium’s escape routes by sealing

their apparatus.

In our experiment, we seal a small container with the correct amount of helium inside
to evenly coat the interior with a uniform film. Our purpose is to study how persistent
currents in helium {ilms can be changed. We have shown that a high émplitude wave
traveling on the film can induce a circulation of fluid in our cell.

For a complete understanding of the mechanisms involved, the two fluid model,

sound waves in helium, and vortices must be introduced.
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The Two Fluid Model

Up until this point, I have discussed only experiments that showed that helium has no
viscosity. When other researchers tried dragging objects through the fluid, they found
a viscous drag force. This paradoxical evidence can be explained by helium’s ability
to act as a combination of normal fluid and superfluid. The two fluids are actually
two different states in the liquid. Because *He is a boson, and any number of bosons
can populate an energy level, a bulk population of only two states is possible. The
ground state acts as the superfluid component, sometimes called a “quantum fluid”
for the rules it follows, and the higher states act together as a classical fluid. The
lowest level is a Bose condensate and is described by the Bose-Einstein distribution
function for the number of atoms in a particular energy level:

‘ 1

n(e) = 1-1

=
et 1

where 7 is the population of the state, € is the energy state, u is the chemical potential,
k is Boltzman’s constant, and T is the temperature. For any state above the ground
state, as temperahne. drops, the denominator goes téwards infinity and the energy
level population falls to zero. When the energy is extremely close to the chemical
potential, as it is for the ground state, the denominator approaches zero, and the

population explodes.

The switch between one extreme and the other occurs at the transition temperature, T,
(figure 1-3). Experimentally, the transition occurs at 2.17 K; the Bose-Einstein theory
is suprisingly close with a prediction of 3.1 K, using the liquid density instead of the

gas density and considering the non-ideal nature of the helium atom.
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of the fluid became superfluid.
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Figure 1-4 illustrates the ratio of the ground state fraction to the excited state fraction

as a function of temperature as found by Andronikashvili (1946). Using many
stacked disks suspended from a wire, Andronikashvili constructed a torsional
pendulum whose oscillation frequency varied as a function of temperature. The disks
were closely spaced so that normal fluid would be unable to move between them, and
he was able to determine the ratio of normal fluid to superfluid by monitoring the
frequency changes. The results indicated that below 1 K, essentially all the fluid is
superfluid. This is the realm in which we work.

Sound in *He Films

The odd coexistence of the two types of liquid helium allows waves to travel in
several ways through films or bulk helium. The most familiar methods of
propagation are those for first sound and third sound. First sound is exactly the same
kind of compression wave that occurs in air, and it occurs in both components of the
fluid working together. It is characterized by density changes and no temperature
variation. Third sound is a pressure wave that is relieved by surface motion and exists
in superfluid only. The normal fluid is fixed. It is the same as a gravity, or shallow
water, wave but also has a temperature oscillation, which is a common way to detect
it. The troughs of the wave are warmer than the peaks because there is less superfluid
present, and superfluid flows toward warm places to cool them. The troughs are the.
next peak locations, which sets up a standing wave. Both of these kinds of sound are
fairly easily understood because their motions at least are the same as those found in

fluids such as air and water, although the actual mechanics are very different.

Other types of sound in liquid helium travel in unexpected ways. The less familiar

versions are second sound and fourth sound. Both require different actions from

6
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superfluid and normal fluid. Second sound is a temperature wave. The superfluid

and normal fluid fractions oscillate out of phase, so there is more normal fluid in
some areas and more superfluid in others, but the {luid density remains constant. The
various ratios are related to specific temperatures in the concentration graph (figure 1-
3), resulting in the temperature wave, but here there are no surface effects. Fourth
sound is a pressure wave in the superfluid in a porous medium where the pore size is
small enough that the normal fluid cannot move, but the superfluid can. Because
there is no free surface, there are température and density waves as well. There are
even more types of wave travel than these, but they are even stranger, and will be left

to the reader to discover.

Vortices

The last and most importént part of our experiment to be introduced here is vortices,
without which we could not have superfluid circulation. Vortices arise from the fact
that the superfluid fraction is made up of ground state atoms, for which we can write
the wavefunction as an amplitude and a phase

Y=, 1-2
where ‘¥, is a constant amplitude and ¢(r) is the phase. By the Bohr Sommerfeld
condition, integration of the phase changes around a loop in space must result a
multiple of 2n . The phase ¢(r) may be written as £/, the wave vector times a length

and integrated:
dk-dl =2mn. 1-3

From there we may use a substitution for the momentum, 2k = mv | to change

variables to the velocity:
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h
dv-di=—n 1-5

my

and assuming n = 1, complete the integral around a circular loop:

v2mr = — 1-6
m,

When we solve for the velocity of the fluid,

v=iq3 | 1-7

nyr
we get the velocity field of a vortex. A vortex is a line around which fluid flows
quickly close to the core and slowly far away. Depending on our choice of n, we can
choose any number of vortices to be enclosed in the integration loop; they are

quantized such that whatever the strength of the velocity field, it must be a multiple of

% . To be strictly accurate, an arrangement of many vortices in one place is
4

unstable because they repel each other. A collection of vortices near each other
produces the same flow field as the bunched vortices when observed from outside the

loop enclosing them.

This thesis describes our experiments on the interaction between third sound waves
and vortices. Different distributions of vortices in our experimental cell maintain
different flow fields around its interior. When the waves and the velocity fields of the
vortices interact, the vortices may move. Wave amplitude data and vortex
configuration information taken before and after the wave has passed allow us to
determine how much power is used to move the vortices. Our power data indicates
that vortices can move in two different fashions, and currently we have no model that

can explain both behaviors.




Chapter 2
CHAPTER 2

The Cell and Wave Driving Information

The experimental cell in which we study flow in superfluid helium films is a small,
hollow disk. On the top and bottom of the disk are capacitor plates. Because the
helium film is a weak dielectric, the changing electric fields between the capacitor
plates make waves in the film. The amplitude and frequency of the waves can be
detected using another capacitor, and from the amplitude measurements a myriad of

information can be deduced.

The waves caused by the changing fields are third sound waves, and the chamber is
often referred to as the third sound resonator. As was mentioned in Chapter 1, third
sound waves are analogous to shallow water waves, but the restoring force is the van
der Waal’s attraction to the substrate instead of gravity. The films are in general
about 3 nm thick (around 10 layers of atoms), and the radius of the cell is about 1 cm,
so the wavelength of the third sound is very much greater than the film thickness.

The film thickness oscillations can be as small as a fraction of a layer or as large as a -

third of the film thickness.

The cell is located under the mixing chamber of a homemade dilution refrigerator
(Kittel, 1980) that we usually run at 100 mK. The cell that has been used for all the
experiments in this work except for the film thickness calibration in Appendix B was
constructed in 1991. The capacitors in the cell are arranged in a circle, with the plates
made of 100 nm thick gold film. The gold was deposited on glass pieces using
thermal evaporation (see Appendix A). When the gold was evaporated, one of the

pieces was masked to make one circular plate; and the other was divided into five

9
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regions. When the two pieces were placed face to face, they formed five capacitors.

The circular area containing the capacitors was then sealed with glue so that the

resonating film is enclosed in a hollow disk (figure 2-1).

Third sound waves are driven in the cell by the capacitors because helium is a weak

dielectric and feels a force per unit mass when it is in a changing electric field.

- 1(s—- -
f:___gf___EQlVEZ 2.1
2 p

where ¢ is the dielectric constant of helium, g, is the permittivity of free space, p is
the density of liquid helium, and £ is the electric field between the capacitor plates.
Restated, an AC voltage applied across a capacitor pulls a dielectric into the capacitor
region. Two of the capacitors in the cell are used in this way to drive third sound
waves in the cell. A single drive can be used to excite a standing wave, or the two -

drives can be used together to drive a rotating wave if they are driven out of phase.

The traveling wave moves around the cell in the i{ﬁ direction, depending on the
phase of the drivers, through all the capacitors. Similarly, another of the other
capacitors serves as the pickup. As the level of the helium in the pickup capacitor
changes as a wave travels in the cell, so changes its capacitance. The pickup is part of
an LC circuit that oscillates at 76 MHz, and the changes in capacitance are translated
into a frequency. Standard RF detection equipment is used to detect the frequency
change on the 76 MHz carrier wave. This arrangement allows us to determine the
amplitude of the third sound wave, something that groups using temperature to track

the waves cannot do.
Experimental Techniques

The amplitude information that we collect from the pickup comes in terms of a

1
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magnitude and a phase relative to the resonance being examined. This data is usually

tracked as a function of time or of frequency. After a resonance has been driven and
the drive is turned off, the resonance amplitude decays in an exponential free decay.
A recording of the film displacement as a function of time yields the frequency and
the Q of the resonance. The same frequency and Q information can be gathered by
turning on the drive at low voltage and stepping the frequency across the resonance

and collecting amplitude vs. frequency data.

A free decay is the fastest way to characterize a resonance, but it is only useful if the
resonance is easy to drive. A combination of high frequency, about 1000 Hz, and a Q
lower than about 20,000 is typical of a resonance that decays too fast to produce
accurate data. The drive oscillator must be set very close to the resonance, if not on
it, so that a drive under about 15 V {of a 30 V maximum) can excite a raw amplitude
of about .5 mV. At that point the drive is turned off and the amplitude and time are
recorded. When the amplitude falls, the amplitude and time are recorded again, and

from the two points, the Q is found.

t, =1
= onf,—27h 22
Q=21 A

where f}, is the drive frequency, and 4, #;, 4;, and 4, are the initial and final times and
amplitudes. If the drive was set on resonance, the phase stays constant during the
decay. If1it drifts, the rate of drift can be used to determine how far the drive
frequency is from the resonance:

The standard program for this type of data is CheckFQ. It takes many free decays,

adjusting the drive frequency according to any drift each time, and averages the

results when the operator stops it, typically after about 4 iterations for Q’s around

12
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30,000.

Stepping the frequency with a fixed drive amplitude and recording the wave
amplitude is the best way to find frequency and Q data when the resonance is difficult
to drive because it can be fitied very accurately. Taking 10 or more seconds at each
point can average out noise that obscures free decay shapes. However, the frequency
range of the scan must include the tails of the peak, so these scans can take the greater

part of an hour.
Bessel’s Equation and Modes of Oscillation
The resonances are standing waves set up in the cell. Because the cell is circular, the

shapes of the waves are determined by Bessel’s equation, which we can derive using

the equations of motion of the superfluid:

oh =
N 2-4
% (Av)
By - _
&L 5V =—gVh 2-5
(@) =g

where /4 is the film thickness, g is the van der Waal’s force between the fluid and the
substrate, and v is the velocity of a particle of fluid. Equation 2-4 is the continuity
equation and merely states that if fluid is flowing into (out of) a region, the height
must increase (decrease). Equation 2-5, Euler’s equation, is more difficult to interpret
because of the convective derivative term but is in fact Newton’s second law. The
convective derivative arises because we work mathematically with partiéles of fluid
instead spéciﬁc locations in the film (Kundu, 1990). By assuming an oscillatory film

thickness and velocity,

h=h(r)+ne™e™ 2-6

13
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V= (fvr (r)+ $v¢ (r)}"""i7 e, 2-7

we can make substitutions in the continuity and Euler equations to derive the

. . ov : :
equations of motion in terms of ;ﬂ,a—’, and v,. Ignoring non-oscillatory and
¥ 'a

second order terms, the combination of these results forms Bessel’s equation:

dm  dn |
= +r;+(klr2—m2)1=0. 2-8

The wave amplitude, 1), is a Bessel function, and thus the modes of oscillation are

similar to the familiar drumhead modes except the edges of the fluid are free to move.

The modes are referenced as the number of angular node lines first and then the
‘number of radial antinodes. The modes that we drive most frequently are the (1,1),
(2,1), and (3,1), buf we have in the past been able to reach as high as the (11,1) (figure
2-2). The geometry of the cell prevents us from coupling to multiples of the (4,1). At
thjnner films the mode frequencies are higher and the Q’s of the resonances are lower,
and the modes are thus harder to detect. Also, as the number of radial nodes
increases, the possibility of the thickness oscillations from a wave canceling out over
the drive and pickup regions increases, and the modes are accordingly more difficult

to drive and find.
Applications of Cell Geometry and Bessel Functions

The third sound wave speed can be found using the ceil geometry, the dispersion
relation, and the measured frequency.

o =ck 2-9
where o is the resonance frequency, ¢ (or ¢;) is the third sound speed, and £ is the
wavenumber. k& can be replaced using a standard substitution in Bessel equations:

14
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Figure 2-2a
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The (3,1) and (1,2) modes.

Figure 2-2b
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30

Figure 2-2c: The (11,1) mode. This is the highest mode we have detected to date.
The pickup capacitor is more likely to be overlapped by many ripples of the (11,1,
causing cancellation and making higher modes more difficult to detect.
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kr = x. At the outer radius of the cell

ka=x_, 2-10
where a = 0.00615 m, the radius of the cell, and x,,, is the argument value required for
the derivative of Bessel function to be zero, as it must be at the edge. With this
information, we can write the third sound speed in terms of the experimental

frequency and some constants

¢, =—2 2-11
X

n

In reality, the film responds at twice the drive frequency, so © = 2n(2fp) = 4nfy. The
electric field oscillates at o, but the force on the film is from the square of the field.

The squared sine function of the drive generates the frequency doubling.

The third sound speed is related to the film thickness by

c=+Jgh 2-12
where g =the acceleration of a helium atom toward the gold substrate from the van
der Waal’s attraction between the two, and % is the film thickness. (This formula also

works for water waves, using gravity and water depth (Kundu 1990).)

g can be found from the Van der Waal’s potential between a point and a plane.

2-13

U=-=
Z

where « is the binding energy per atom, and z is the distance from the atom to the

substrate. o can be rewritten in terms of the binding energy and the atomic size:

3 3
U:_Eg_(i:j =_&Iz_[ﬁj , 514

m\z m, \z

18
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m )3
where z; = (?4) and p ="He density at .1 K.

By taking the derivative of the potential

g:(—-a—U(z)J 2-].5
0z i
and using 2-12,
3
¢, = h[i U(z)) = M(z—‘) 2-16
0z N m, \h

we find a simple relation between the film thickness and the wave speed. In fact, to

be extremely accurate, there are many factors that can be included:

3
.l = B_S.(ﬁ:_‘.i.) 3kpTy (Z_l) 1 2.17

3
h
e
z?‘

where Ps _ 1 because we work lower than 1 K, d = the boundary layer, a layer that
o}

cannot move because the wavefunction must go to zero at the substrate, and z, = the
retarded potential. (The retarded potential comes from /72 > /2" at large distances,
approximately 40 layers.) Generally we use equation 2-16 with the value of Ty,

found in Appendix B.

Using the film thickness, amplitude information, and an understanding of the force on

a dielectric, we can directly calculate the power used in driving a wave around the

cell. The power is the time average of the force on the film times the fluid velocity.
The electric field from the capacitors can be found and used to find the force on the
film. Equations 2-4 and 2-5 yield amplitude and velocity information. The derived

expression for power can be rewritten in terms of the experimental relative amplitude,

19
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the phase relative to resonance, and a collection of factors that come from Bessel

functions and geometry.

Mathematically we find the power by taking the time average of the force on the film

dotted into the fluid velocity and integrating over the volume of the cell.

P= f 218

nme

We can derive the force, assuming the electric field between the plates is

E'(r.9) = Z ZAmn o)™ forD1 - 2-19

=0 R=-00

and

E, (r.d)= Z ZBM (k, et for D2 2-20

m=— H=—0m

where ¢, is inserted into equation 2-14 because the two drive plates are driven out of
phase. To isolate and determine 4,,,, we need to separate the time dependené,e and
apply orthonormality relations to equation 2-19. We multiply both sides by J,(x) e

and integrate over the area of the drive:

2 a ‘ V %a
[ I3 4,000, e e rardy = = J Je 7 coyraras
& 0 mn 00
2-21
where
x=k,r
2
%V—z 0< < g
Elrd)=1"%¢
T
0 —<h <2
2 ¢ T

(the electric field must only exist in the quadrant of the drive plate)

20
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g = the size of the gap

2

J g™t g~ dé =2nd -

.0

and

(xim - mZ )(Jm (xmn ))2

1
J J (x Yxdx=
.[ m (xmn) m( mn)x zx:m

(Abramowitz and Stiegun, 1972).
Dividing through, we solve for 4,

@#({—i)’” - 1jTJm (x)xdx

A= : 222
2n ;T(xfm - mszm (%, ))2
me (x)xdx
_1 V2 i OI i )
(( ~)" — ( g ey 2-23

Similarly,
. [, (oyxas
1
———(-D" - ol 0 2-24
OOV ey

T <
where in this case E,*(r,¢) is non-zero from 5 to w , which is accounted for by ¢,.

With these parameters, we can find the force:

f:_l(s SO)VEZ 2_25
p

where

21
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E’=E’+E}, 2-26

and E represents the spatial electrical influence.

Having established a way to find the force, the next step to finding an expression for
the power is to derive an expression for the fluid velocity. Using equation 2-5, the
velocity can be found from the amplitude of the wave oscillation

N =14, (x)e MO bd 2-27
$,.; accounts for the wave motion being shifted 45° relative to the way the drive plates -
were defined. By looking at only the oscillatory terms and eliminating second order

terms, Newton’s second law can be rewritten as the following:
av -
rY R gvn . 2-28
| g in this case is the acceleration from the van der Waal’s attraction to the substrate.
At this point we could take the gradient in equation 2-28 and integrate to find the
velocity, but it is far easier mathematically to leave equation 2-28, and for that matter

equation 2-25, as they are.

The original expression for the power can be written as an integral over the mass

instead of the volume:

P=[{f-v),,.dM. 2-29
To that we may apply Green’s first identity:
f%fc;) Ny dV = f¢ A-Vy dS — Iq; Vi dV 2-30
¥ Ay v
so that
1 2 .
P=_Re [ov7pan . 2-31
Let
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1€ —¢
o __1E=8) b 2-32
2 p
so that
f=Vb 233
and
g
== 2.
y P n 34
so that
¥=Vy. 2-35

The first term in 2-30 is zero because there is no velocity component normal to the
surface, i.e., outside the cell. Now the power can be written as an area integral:

P= 1(1@}(_&] [E29%n * phda 2-36
2\2 p 0]

2 Xy
_T (e f»o)cs J‘(AM J. (x)e"™0 L B ] (x)e:'(m-(mr-m))% J, (x)e 1 or) o g
2 © b

mn* m
i

2-37

é%;m {(—i)’" 1+ [nm - o e }szm (x)xdx 2-38

_ 2 12 X
- %wgsmz [@41) [ 7, o) 2-39
om g ;

where we have neglected the subscript on ). We may define £, as the power required

to maintain an oscillation that empties and fills the cell to a height h:

1 , €,
P =—oCV; —|1-— 2-40
4 g\ € .
where
sorta2
) = 2-41
g

23
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A compact form for the power emerges:

P=8,B " cos(d = 9,,,) 242

where

£ = mniz sinz(nzt) [EAEE 2-43
0

for maximized signal for each mode. The form in equation 2-42 was chosen because
the geometrical constants, Bessel constants, and the experimentally measured

quantities, amplitude and phase, are all represented in separate terms.
High Amplitude Third Sound Waves and Overdriven Modes

We use the power calculation to analyze the results of driving high amplitude third
sound waves, waves with amplitudes one-quarter to one-third of the film thickness,
around the cell. Most of the experiments in the following chapters involve driving
these waves to change the circulation of the film. Prior to these experiments, a drive
of only 10 V was used across the drive capacitors, and the circulation state of the film
could not be changed. Increasing the drive voltage to 30 V with the addition of a
transformer box gives us the power to change the circulation with any of the three
lowest modes, but not all the time. At thin films we are unable to swirl any of the
modes, but as the frequencies decrease and Q’s increase with increasing film
thickness, the lowest frequency modes begin to respond, until at very thick films our
ability to swirl again drops off. Using geometric considerations we concluded that to
drive the (1,1) and (3,1) modes the drive plates should be 90° out of phase (¢, in
equation 2-20), but logically we could not decide between driving the (2,1) with 90°
or 180° since neither should couple. Experimentally we have determined that 180° is

the optimum phase.
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Mode Shapes and Different Ways to Plot Them

To understand our swirling models, it is necessary to first study resonance behavior.
The simplest resonance structure is the simple harmonic oscillator, where

mi = —fx, - 2-44
and the solution is

x=x,e"". 2-45
Adding both a driving force and some damping makes the amplitude more
complicated:

mk = —oc —v% + fye™ 2-46
fo gor

x= m i 2-47
2 2, 0O
O -0, +i

where w, is the resonance frequency and Q is a measure of the resonance decay time.
The amplitude can be plotted one of two ways. The standard graph is of amplitude as
a function of ﬁequency, which is a Lorentzian curve. Figure 2-3a is an example of a
Lorentzian curve slightly distorted by a background signal. That amplitude is a
combination of the real and imaginary parts of the data (figure 2-3b). The amplitude
can also be plotted as the imaginary part vs. the real part, which more readily reveals
phase information (figure 2-4), as it yields a circle (figures 2-5 and 2-6). The
beginning of the circle, to the right of the origin, is where the driving frequency is
well below the resonance, and a mass on a spring would oscillate in phase with the
driver. As the driving frequency approaches resonance, it steps faster in phase, and
the steps are farthest apart on resonance where a mass would oscillate ninety degrees
out of phase. As the phase swings to 180° out of phase, where the frequency is too

high, it completes the circle.
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Figure 2-3a: Amplitude data from a scan of the frequency over the (3,1) mode shows

the expected Lorentzian line shape.
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{3.1) Resonance
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Figure 2-3b: A plot of the real and imaginary parts of the resonance amplitude as a
function of frequency.
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Figure 2-4: Phase of a resonance as a function of frequency.
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0.t

Figure 2-5: resonance plotted as real and imaginary componenis.

1. Below resonance, the theoretical mass oscillates in phase with the driver.

2. On resonance, the system is 900 out of phase. The steps in frequency are
constant throughout the scan, but the phase changes more rapidly on resonance, so

the points on the graph are spread out.
3. Above resonance, the system is 1800 out of phase with the driver.
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Figure 2-6: Data from figure 2-3a, plotted as the real and imaginary parts
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There is a background signal and phase shift that offsets and rotates the circle

depending on its direction and magnitude at the resonance frequency. The
background comes from the phase shifts and other complications from the electronics.
We can easily subtract the background at a point near the resonance, but the circle
may still be rotated; it is still easy to fit and extract the frequency, Q, and other

relevant data.
Mode Splittings

In an ideal, quiescent film, a wave can travel around the cell in either direction in the
same amount of time. If the film has been swirled, the two modes split; one
frequency is Doppler shifted up, and the other down. By measuring the splittings of
several modes we can determine the velocity field of the circulation state inside the

cell.

Even when there is no flow in the cell there is still a small splitting that can be
explained by asymmetries in the cell—imperfect alignment of the holes in the two
glass pieces or a non-circular glue seal. Typical non-swirled splittings are 6x1 0™ for
the (1,1), 3x10™ for the (2,1), and 2x10 for the (3,1). When the film is swirled, these
geometrical splittings are negligible, but it is useful at small splittings to be able to

separate the swirling splitting from the geometrical one.

A useful model is that of a two level system. The model assumes two energy levels
far from the rest but close to each other, a situation that is exactly related to the
splitting of one mode. When a perturbation is introduced, such as a DC flow in the
cell, the effects on the modes are predictable. (This is very reasonable, except in the

case of the (1,2) mode, which interacts with the (4,1), which if we had a perfect cell,
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Figure 2-7: Splitting diagram. Because of geometrical asymmetry in the cell, the
splitting can never be zero. The upper and lower modes instead follow the hyperbolic

paths when the circulation is changed.
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we could not see.) This analysis results in a picture of the energy splitting where the

split modes do not split linearly but each branch follows a hyperbola (figure 2-7).

Thus we can separate the two kinds of splittings:

S = yy? + A
A 2-48

where v = splitting from flow, and A = splitting from geometry. (For more

information, please see Cohen-Tannoudji (1977) or Luo (1992).)
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CHAPTER 3

Vortex Pinning, Drag, and Interactions with Moving Fluid

Background information about vortex motion and pinning is required before the
models of Chapter 4 or the power analysis in Chapter 5 can be understood. The first
step towards this goal is to understand the substrate on which the vortices move. We
have examined the gold substrate in our cell with a scanning tunneling microscope
[Darryl’s thesis] and have modeled the surface as a collection of Gaussian hills.
Because of surface tension, the film is slightly thinner over a hill, reducing the length
of a vortex line on the hill. With less fluid involved in its motion, the vortex has a
smaller kinetic energy. This energetically favorable preference for hills among
vortices is called pinning. (It is also possibie that vortices pin to defects in the gold,

for which we have not constructed a model.)

To unpin a vortex, a force must be applied, and the only force available comes from a
flow of fluid past the vortex. The vortex is a rotational velocity field, and if it is
placed in a constant linear -ﬂow, on one side of the vortex the velocities will add, and
on the other they will cancel. The resulting force from the pressure differences

[Bernoulli’s law] is called the Magnus force (figure 3-1).

F =pkhix(V-7) 3-1
where p =the superfluid density, k = mi (the quanta of circulation), v is the velocity
4
of the vortex core (not to be confused with the rotational velocity field of the vortex),
v, is the background superfluid velocity, and the z-axis 15 aligned with the vortex core
and is perpendicular to the substrate. The pinning force can be modeled as a static
friction
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superfluid
flow

Q___-_>

Mbgnus force

Figure 3-1: Magnus force, pxhz x (v~ v ). The z-axis is along the core of the
vortex, pointing out of the page.
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F =—f. 3-2

When the Magnus force exceeds the piﬁrﬁng force, the vortex will slide off the hill.
The fluid velocity required for such an event is called the critical velocity, which we
can find experimentally by calculating the fluid velocity when the film just begins to
swirl. Theoretically, the critical velocity is found by balancing the Magnus force and
the pinning force

pxav, = f,, 3-3

S0

v, = A 3-4
pKA

With the addition of a viscous drag force, the total force on a vortex is
Fre = pRIZX (v —v ) — foV =7V . 3-5

Because the core has no mass, this equation determines the movement of a vortex.

When vortices move, their change in position means that the circulation state of the
system has changed. This change can be understood by examining the results of
vortex motion on an infinite strip of film. In the film there are two kinds of vortices:
positive and negative. They come in equal numbers because they come from a vortex
ring that expands as it gains energy until it hits the surface, when it splits into the two
opposite vortices (figure 3-2). Given a kinetic drag force to keep the vortices from
simply flowing along with the fluid around them, a driven fluid flow will make the
vortices move in a direction with a component perpendicular to the flow. The two
different kinds of vortices will move opposite directions, which collects positive
vortices on one side and negative ones the other. When we turn off the driven flow
with all the vortices separated, we can examine the flow between the two rows of

vortices from their 1/r fields. Because the vortices circulate in opposite directions,
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Figure 3-2: Vortex creation. When the film is being cooled through the transition

temperature, the turbulence from boiling produces rings, which form two vortices
each below T,.
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their velocity fields add in the middle of the strip, and we can say a flow has been

induced.

Ouwr cell can be envisioned as two parallel infinite strips of film attached only at the
edges. Given a driven flow that sorts positive vortices to the right and negative ones
to the left on the bottom strip, a flow in the same direction on the top strip will sort
the vortices in exactly the opposite direction; upside-down vortices circulate the
opposite way from their right-side-up comrades. It may seem at this point that at the
very edges of the strip there would be a very fast flow that would make the net
induced flow on the strip zero, but a negative vortex on the top moves to the same
edge as a positive vortex on the bottom and vice versa. When they wrap around the

side connection, they annihilate, leaving no backward flow.

This model for vortex sorting can be moved into our cell by bending the two infinite
strips and joining them so that one edge forms the boundary to the hole and the other
forms the outer radius of the cell. When the vortices are sorted, some may get to the
hole or the edge, but many are left sitting in the cell, supporting the flows that are
described in Chapter 4.
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CHAPTER 4

Programs and Models

SPLIT.BAS

When I entered the lab in 1993, the flow field inside the cell was yet unknown. My
first modeling contribution was to write a program that calculated the splittings for
the modes given a proposed flow field. By comparing the experimental splittings to

the theoretical ones, we hoped to determine the experimental flow field.

To achieve this goal, the program began by integrating Bessel’s equation, the
components of which we derived from the equations of motion of the superfluid as
discussed in Chapter 2:

oh <
Z = V(v 2-2
o (h¥)

ov = =
2 e oVh— (- V)V 2-3
o 8 (v-V)v

Again, an oscillatory film thickness and veldcity were assumed, but this time the
velocity has a drift velocity component, v,.
h=h,+ne™e™ 2-4
¥ =dv, () + v, () + tf)v¢ (r)e™e ™ . 4-1
The substitution generates the following equations, which when integrated in steps

forms a perturbed version of a Bessel function:

2
@:(a)mmv”jv + Y vy 4-2
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ov [ my ) v, m
' = e I+ L — — 4-3
or ¥ n ror?

_mm — @, +rvl ),

Yy
Wr - my,

All velocities have been scaled by the third sound velocity so that v_ = Yx ,
Cy

and m has been scaled by the film thickness so that n = %

From these equations, we can calculate the frequency shifts from the presence of a
flow in the cell, and from those, determine splittings for the various modes that we
usually measure (figure 4-1). The splittings are found experimentally by

5 :A_(”, 4-5
1]

the shift of the mode up or down from the unshifted frequency over the unshiﬁed
frequency. Each different flow ficld plugged into the program produces a different
effect on the splittings of each mode. We used velocity fields proportional to 1/, a
constant,hand r. Different flow fields have regions of greater flow in different radial
locations, so some interact more with the (1,1), where the greatest motion is through
the center, and some interact more with higher modes, where most of the action is
near the edges of the cell (figure 4-2). A parameter y ,, must be introduced to account
for the strengths of the splittings for each of the modes and flow fields.
Ao vo(a)

mn

® Cs

4-6

Here the shift has been explicitly scaled by the third sound speed and the flow at the
perimeter of the cell. Previous work has been done to find vy ,,, using perturbation

theory (Appendix C, part 5), and the program confirmed the earlier values (see M,,
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Figure 4-1a: An example of calculated splittings for a 1/r flow field as a function of
strength s. This is the flow field that would result from having all the vortices in the
center, with s proportional to the number of vortices. Splittings of all modes increase

linearly.
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splitting for (1,1), s field
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Figure 4-1b: An example of calculated splittings for a constant flow field as a
function of strength s. This field would result from having a 1/r distribution of

vortices. All splittings are linear.
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spiitting for (1,1), s°r field

'fO]S - v - T v T + - T i)
.-G—-‘
1.010 F
o

£
7 -
5. 1.005 b
& i o
=
o
2 e
ko] 1.000 | T -
o ..., { - ]
3 e

osesf O

£ I ----‘-.e .........

°°°°°° ©
0-990 A4 i re g1 - A i X H A " L ) ] rs A n
0 0.02 0.04 0.06 0.08

flow field strength s

Figure 4-1¢: An example of calculated splittings for a flow field proportional to r as a
function of strength s. This solid body rotation of the fluid would require a constant
distribution of vortices. Although the shifts about the unswirled resonance are not
symmetric on the graph for the (1,1) (the lines are curved), the splittings still increase

linearly for all three modes.

43




Chapter 4

The (1,1) and (11,1) modes. Fluid motion for the (1,1} mode is through

.

Figure 4-2

the center of the cell, while motion for the (11,1) is predominantly around the edges.
The splittings of the two modes are sensitive to fluid flow in different locations, and

by using the splittings of several modes we can accurately map fluid flow as a

function of radius of the cell
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below, Baierlein, private communication). Also the program results verified that the

splittings were linear as a function of the strengths of the chosen fields.

Given the ability to produce theoretical splittings, we can use the results of a
combination of those to match experimental splittings and find the flow field in our
cell {(figure 4-3a). The experimental flow ficld can be written using the three

previously mentioned flow fields as a basis set,

v(r)=c3(c(,£+c1 +c, i], 4-7
r a

where ¢, is the third sound speed and the other ¢ coefficients are weighting factors.
The experimental splittings, here denoted byd,, 8,, andd,, can be used to calculate

Cys C;>and c,.

3, Co
d,|=M, ¢, 4-8
3 C
127 153 089
where M, =1 117 630 409 (columns = 1/, 1, and r; rows =(1,1), (2,1), and
113 755 .549

(3.1))-

The resultant combination of theoretical flow fields reveals that while most of the
vorticity is trapped in the hole in the center of the cell, vortices are distributed all over
the cell. Figure 4-3b shows a representative sample of v(r) and n(r) results. Because
the hole was ground in the glass slides, it was expected that vortices would be trapped
on the rough surface there, but because the vortices are all over the cell, we postulated

the pinning model discussed in Chapter 3.

The vortex distribution and total number of vortices in the cell can be calculated from
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Mode

(1.1)
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3.1)

(1,1
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(1,9)
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3.1)

Figure 4-3a: Representations of the scé[ed splittings for pure flow fields.
The dotted spiittings are an example of experimental splittings. Experimental
splittings are matched using a linear combination of the pure flow fields.
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Drift Velocity in the Cell for Four Different Circulation States
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Figure 4-3b: Examples of experimental flow fields and the vortex densities that
support them. The different curves each represent a different field.
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the flow field. We begin with the velocity based on a general vortex distribution;

some number N, vortices are trapped in the hole, and a distribution n(r) are in the

cell.

v(r) = %{N{, + n(r)2nrdr] 4-9

4+

By taking the derivative of both sides we can write n(r) in terms of v(r).

n(r) = [6"@ + V(r)} i 4-10

or r |2nh

This information is the last that we could glean from splitting data. The biggest

remaining question was how the vortices arrived at their positions.
FLOWFLD.BAS

The next step on the road to understanding vortices was to use the model of a third
sound wave interacting with vortices to calculate a flow field to compare to the
measured fields generated by the high amplitude waves. In order to determine what a
vortex would do in the cell, we needed to examine the fluid flow there. The flow was
not simply a DC current, but an oscillatory flow that interacted with the vortices to
create a DC component. The argument leading to the flow under the wave is most
easily understood if it is started with a plane wave instead of a circular wave. The

film thickness oscillation is sinusoidal

M =1, cos(kx —ot) . 4-11
By substituting the amplitude into the one dimensional continuity equation, we can
find the velocity:
on _ whg _ 4-12
ot ox
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Figure 4-4: Fluid motion under a traveling wave. To move the wave to the right
(solid line to dotted line), fluid must flow out from under the old peaks to lower them
and under the old troughs to raise them. Accordingly, fluid must flow in under the
new peaks and away from the new troughs. Logically, fluid under the peaks flows
forward and under the troughs flows backward. :
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v:c%cos(kx ~0f) . 4-13

The velocity and the wave amplitude are both cosines because the time derivative of

the thickness oscillation is integrated over x to get the velocity.

Direct comparison of the wave and fluid velocity shows that the velocity of the fluid
under the wave is positive under the peaks and negative under the troughs. This
unintuitive fact can be explained by examining the position of the wave in the next
instant. The peaks and troughs will have moved to the right for a standard traveling
wave, and the fluid must flow out of the regions where the new troughs will appear
and into those under the new peaks. The fluid flowing forward under the old peak
and backward under the old trough accomplishes this motion (figure 4-4). Vortex
motion induced under these waves 1s symmetric. Every motion under a peak or

trough is countered under the next trough or peak.

There is a net drift of the wave media; more fluid is moving forward under the peaks
than is moving backward under the troughs because of the variations in the film
volume under the wave. If the assumption is made that there should be a constant
flow rate at all points under the wave in our cell, the waves must be non-linear, which
is key to this model of vortex motion. The wave shape is chosen by setting the flow
rates, vk, under the peaks and troughs equal. Using the overall film thickness in the
following form:

h = h, +ncos(kx —of), 4-14
the nonlinear velocity can be found by dividing the linear velocity by the dynamic

film thickness
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Three Nonlinear Velocities from Different Wave Amplitudes

N

phase

Figure 4-5: Scaled non-linear waves. The third sound speed in this example is ten
times larger than the critical velocity. The critical velocity is marked on the graph at
+1. See figure 4-6 for experimental critical velocities.

52




critical velocity

critical velocities for moving vortices in different film thicknesses
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Figure 4-6a: Some sample critical velocities.
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Figure 4-6b: Relative frequency change of the (1,1) mode for increasing maximum
flow speed under the wave, The curves continue to rise at the end if the peak flow
speed is increased further, but these curves are used to determine critical velocities,
Note that the mode sometimes shifts down before its rise,
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chicos(loc — o)
= — 4-15

1+ cos(kx —ot)
(]

Vnon[r'n

Expanding,

v =cg_(l—gmcos(kx—a)t)]cos(kx—c)t) - 416

nonlin
0 (1]

(figure 4-5). Henceforth we will neglect the subscripts and refer to /4 as s, The

asymmetric flow can, with a high enough amplitude, produce a net vortex drift.

With the non-linear wave, the fluid velocity may exceed the critical velocity under the
troughs or under both the peaks and the troughs of the wave and move vortices. At
small wave amplitudes, the critical velocity will never be exceeded. The waves will

be essentially linear, but the reason that vortices will not move under them is that the

fluid velocity is too small to move vortices off of their pinning sites. As % increases,

the waves become more nonlinear. Because the wave is deeper at the troughs and
shallower at the peaks, the trough velocity will exceed the critical velocity first. Then
vortex motion occurs in one direction only, according to the fluid flow under the
troughs. The vortices stop moving when the induced drift velocity works against the
trough velocity and the result no longer exceeds the critical velocity. The drift
velocity adds to the oscillating velocity field, shifting it up by a constant until the
critical velocity is no longer reached at any point under the wave. Vortex motion

stops in this new configuration, and we say that the film has been swirled.

The last possible case, where the critical velocity is exceeded under both the troughs

and the peaks, comes to a net drift argument. The vortices move one way under the
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troughs and the other under the peaks. The motion under the peaks and troughs must

exactly cancel in equilibrium. The locations of the vortices vary over a full wave

cycle, but their average positions determine the drift velocity in the cell.

The program FLOWFLD steps along the radius of the cell and calculates v,,,,,;;, given
an experimental third sound speed, mode, and amplitude. The wave velocity is given

in components by

pul ”
v, = h (M J (k) =T, (kr)) sin(mg —wt) 4-17
1+ %Jm(kr)cos(md) —of)
and
n
me—
v, = h I (K7 cos(mp —or). 4-18

1+ %JM (kr) cos(md —o1)

If the vector sum of these velocities at the specified radius exceeds the critical
velocity, then the response of the vortex is determined by a complicated formula in
Appendix D. The program integrates the velocity of the vortex over a cycle of the
wave and determines whether there has been a net change in the radial position of the
vortex. To save steps, the program does not keep track of azimuthal position changes
because they do not affect the circulation state of the film. If there has been a shift,
the program adds a drift velocity, v,{(7), to v, and integrates again. When there is no
net drift during the cycle, the program moves on to the next radial position and

repeats the steps to find the next v (7).

The graphs of v; vs. r (figures 4-7 and 4-8) generated by the program have some odd
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(1.1) Mode Drift Velocity, h = 4.4 nm, 3300 Vortices in the Hole
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Figure 4-7: Drift velocity (azimuthal flow)as a function of radius. Examples of an
experimental flow field (Doppler shifted analysis), the predicted flow field from the
programs using experimental parameters (vortex drift simulation), and a predicted
field for a classical fluid using the same parameters. The (1,1) mode was difficult to
swirl at this film thickness, so the experimental flow field for it is small. The
experimental fields for the (2,1) and (3,1) are much larger because they were easy to
swirl, but the predicted fields clearly fail to generate any circulation close to the hole.
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features that occur in different realms of vortex motion. The easiest feature to explain

is the sections of the curves where v, = 0. If the wave is too small at some radius in
the cell, the critical velocity will not be reached there, and no circulation will be
induced. As the number of radial nodes increases, the motion of the film is
increasingly concentrated near the edges of the cell, and thus there can be large parts
near the center of the cell with no flow. Even for the (1,1) mode, most of the motion

occurs away from the center because the wave is rotating and not standing.

At radii where the trough velocity exceeds the critical velocity, a smooth increase in
drift velocity arises as » increases. The rise occurs because the amplitude of the wave
varies over the radius of the cell. The region where only the troughs can move
vortices spans a range of trough amplitudes that increase with increasing r. “As the
wave amplitude gets larger, the peak velocity may begin to move vortices. If the peak
velocity never reaches v, under the peaks, then the curve continues smoothly until it
reaches cither the edge of the high velocity region or the edge of the cell. Ifthe
amplitude is large enough that vortices move under the peaks, a kink appears in the
curve as v, levels off. The kink occurs again toward the outer edge of the cell when

the peak velocity drops below v,,;, again,

Comparison of the model to the actual flow field determined that our model was
imperfect (figure 4-7). We have since learned that nonlinear waves are not necessary
for flow to be induced, and indeed, the model failed to predict the concentration of
vortices i the center of our cell. However, it is still interesting to compare our model

to the classical drift velocity (figure 4-8):

1 W L (MY'm 2
—{(h+ =— (—j —(J, (kr 4-19
p (B, =5al) 4 Uan)
[Ellis, 1997]. In Appendix E we will use this model again in an effort to model the
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swirling process.
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Computed (1,1) Flow Field for c,=10 m/s, v _ =1 m/s, y=1
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Figure 4-8: Examples of predicted flow fields for different film thicknesses and y (g)
values and classically predicted fields.
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CHAPTER 5

Effects of High Amplitude Waves

When we first added the transformer that allowed us to swirl the film, we only
worked with the (1,1) mode because higher modes logically would either not couple
to a rotational drive or the mode overlap would be small enough that swirling would
seem unlikely. It was found that a high amplitude scan down through the upper
branch of the (1,1) [the (I,1)t] could increase the circulation. The shape of the
resonance during such a scan was smeared downward, so that the amplitude “crashed”
down off the peak. The amplitude at the crash point was much larger than the
maximum amplitude that could be achieved on resonance. When approached from
below, the amplitude popped up and coastéd down, but hysteretically—the pop was
higher in frequency and closer to the resonance than the crash (figure 5-1). It also
failed to swirl the film. Similarly, the splitting (circulation) could be decreased with a

down crash through the lower branch of the (1,1) [the (1 ,Ij—].

The shape of the resonances can be explained by modeling our system as a driven,

damped harmonic oscillator with a nonlinear restoring force.

mfz—kx+{%x3 —y% + f, cosmt 5-1
Here we must assume a solution for x that includes a cubic (following Baierlein,
1983)
X = ¢, CoS® + ¢, cos3mi+.... 5-2
When x is substituted back into the previous equation and the assumption that

¢; >> c; is made, the coefficients of the powers of e can be isolated and set to zero.

These machinations yield ¢, and ¢, (approximately, but well enough), and the solution
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High Amplitude Up and Down Scans of the (1.1) Mode
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Figure 5-1a: Scans from above and below a (1,1) resonance. The hysteretic effect is
clearly visible.
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1017 c{up) and d{down} (1.1)

0015

0.010

2.005

-0.005

-0.010 -
608.0 608.5 - 609.0 609.5 6100

Figure 5-1b: The same scans shown as the real and imaginary parts of the amplitude
vs. frequency.
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P

Figure 5-2: The sum of the parabola and the hyperbola (aftef Baierléin, 1983) yields
a non-Lorentzian shape with a hysteretical effect. Approaching this resonance from
above, the amplitude follows the top of the curve until it reaches point b, where it
abruptly crashes to zero. In the reverse direction, the amplitude precipitously leaps to

the upper curve at point a.

I
led

-

66




Chapter 5

teyd

Figure 5-3: As amplitude increases, the effects of the non-linear restoring force
become more noticeable (after Baierlein, 1983).
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for ¢, is a triple valued function that is a combination of a parabola and a hyperbola

approximately the same shape as our experimental curves (figures 5-2 and 5-3).

To further investigate the mechanics of the swirling process, a program, FChart, was
created to move the peaks along. It works by following a specific point on the
resonance as determined by the phase. The operator of the program finds the
amplitude and phase where the resonance begins to move. When the drive frequency
has been set manually as close as possible to the crash point but not actually crashing,
the program is started. The program then attempts to stay at that phase on the
resonance even as it moves, and to do that, it must increase the drive frequency. The

(1,1) typically moves at about 0.1 Hz/hour.

A different program, SurfDat, steps the frequency across the resonance, and the data
plotted as the real and imaginary parts shows clearly where the peak starts to swirl.
When the peak moves, the origin of the circle moves, and the circle is distorted
(figure 5-4). The points in the distorted part of the curve can be matched to those on
amplitude vs. frequency plots where the curve turns up right before the crash (figure
5-5). The amplitude of the moving peak increases quickly before the crash because

the frequency step is effectively larger.

During the summer of "95 we attempted to swirl the (2,1). We thought it might be
possible because we had seen some odd behavior (the (2,1) “funnies™) there before
(figure 5-6). We noticed that a high amplitude scan up through the (2,1)+ would drag
the peak up, and our first assumption was that this behavior was because of a non-

linear restoring force with the opposite sign to that of the (1,1).

Plots of the real and imaginary parts of the amplitude reveal that the peaks are still

68




Chapter 5

(1,1) Non-Lorentzian Resonance
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Figure 5-4: This swirling scan of the (1,1) clearly shows its non-linear behavior.
The circle is a suggested fit to the beginning of the scan.
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Figure 5-5: This scan of the {1, 1) mode at high amplitude swirled the film. The
shape would be expected to lean over farther to the left before reaching the peak
amplitude on the graph, but the peak moved during the scan. Then the amphitude
reached its maximum in the shifted location,
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Figure 5-6: (2,1) surf, a.k.a. “funnies.”
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Swirling Scan
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Figure 5-7: Real vs. imaginary part of figure 5-6. The surfing occurs at a fairly
constant amplitude and phase, and the variations create the “blob” on the curve.
Because the curve does not deviate from the circle its restoring force must be linear.
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Lorentzian, so no non-linear restoring force is present (figure 5-7). When the swirling

amplitude is reached, the peak moves, and the amplitude stays the same, which is the
basis for its nickname of “surfing.” Peaks have been surfed as fast as 1 Hz/min once
they have gotten started. It is extremely difficult to swirl a film from a standstill
using only the (2,1) mode, so a very small circulation of fluid should be started with
the (1,1) first. The geometry of the drive plates is such that the drives should not
couple to a standing (2,1) oscillation, but after the rotation has been started, it can be

increased with the (2,1).

We have also had some success swirling the (2,1) with downward scans, but because
the peak moves in the opposite direction to the scan, the down scans are not as
effective as surfs. The data is very similar to that of the (1,1), indicating that the
nonlinear restoring force is present, but Figure 5-8 shows that there is no hysteresis in
the (2,1). Similar amplifudes can be reached under both upward and downward scans,

which accounts for the (2,1)’s ability to swirl in either direction.

| The (3,1) mode is very difficult to swirl with ScanDat, and a study of its swirling
behavior has not been completed. It displays the same behavior as the (1,1) mode
(figure 5-9). Interestingly, data from Fchart indicates that the (3,1) mode can move as
fast as .3 Hz/hour, but the majority of film thicknesses we have attempted to swirl

move much slower or not at all.

In an effort to determine what the vortices are doing when swirling occurs, we
decided to examine the power dissipated by the swirling process. We have already

established a mathematical form for the power:
P= gmp[)(%] COS(¢ - ¢re_g) . 2-42

73




Raw Amplitude (V)

Chapter 5

upa and upb {2.1)
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Figure 5-8: Scans from above and below a (2,1) resonance with an unswirled film.

Neither swirled the film. Here the (2,1) does not surf or follow the hysteretic model.

The same amplitude is reached scanning either direction, and the two curves do not
overlap. Figure 5-11 shows that the (2,1) can swirl under scans in either direction
under the proper conditions, indicating that it follows both models.
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Figure 5-9: Real and imaginary parts of the amplitude from above and below a (3,1}
resonance. This example of the hysteretic effect has reversed the roles of the up and

down scans, which can be accounted for by changing the sign of the non-linear

damping term.
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A series of scans over the (1,1} (figure 5-10) and (2,1) (figures 5-11 and 5-12) at

different drive amplitudes provided different values of n/h including swirling and
non-swirling scans. The scans at smaller amplitudes did not swirl the film and the

powers involved could be compared to those at higher drives that did swirl.

By examining many runs on the (1,1) and (2,1) and some on the (3,1), we were able
to make some general observations about swirling even before analyzing the power
usage. Downward scans always show an upturn in the curve when they swirl the
film. Upward scans only surf, and the (2,1) is the only mode that has been observed
surfing. Other observations were more subtle. The curves of the (1,1) series of scans
fall on top of each other, which at first glance looks correct, until it is pointed out that
the 30 V scans crash before some lower voltage scans. In theory, Duffing’s equation,
and in practice, an increase in drive amplitude means the entire curve’s amplitude
follows a different path (figure 5-3), so some explanation for the locations of the
curves is necessary. The phase vs. frequency data revealed that the curves are phase
shifted, and the shift is amplitude dependent. Recent work (Baierlein, 1997) |
described an amplitude dependent phase shift that we had studied sporadically over
the last few years but had not connected with the high amplitudes reached during
swirling. When the amplitude is high, coupling between different modes affects the
position of the modes. Because the (1,1) and (2,1) frequencies are not multiples of
each other, it is difficult to imagine that they couple, but higher overtones interact.
To avoid energy level crossings, the (1,1) and (2,1) modes shift down. We do not
believe it has anything to do with the swirling process, but is merely a factor to

consider when examining the curves.

Continuing our analysis of swirling, we picked off the peak velocities where the film
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Downward Swirling Scans of the (1,1)
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Figure 5-10a: Study of (1,1) swirling at different drive amplitudes. Amplitude vs.
frequency.
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Downward Swirling Scans of the (2,1)
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Upward Swirling Scans of the (2,1)
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Figure 5-11b: Studies of (2,1) surfing at different drive amplitudes. Crashes show up
in this type of diagram as large gaps between points, but unless the film swirls, the
circle 1s completed.
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Downward Swirling Scans of the (2,1)
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Figure 5-12a: Study of (2,1) swirling at different drive amplitudes under downward
scans.
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Downward Swirling Scans of the (1,1)
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Figure ﬂS-=12b: Studies of (2,1) swirling at different drive amplitudes. Crashes show
up in this type of diagram as large gaps between points, but unless the film swirls, the
circle i1s completed.
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swirled for different modes and film thicknesses (figure 5-13). The data shown

includes all of the series data discussed above and some older data at thicker films,
and illuminates several trends. One such trend is the low velocities at which the
higher modes swirl. Because of the coupling between the drive and the higher modes,
it is more difficult to achieve high peak velocities with higher modes. Given the low
velocities, 1t would appear that the higher modes are easier to swirl once those
velocities are reached, but the drag forces are comparable to those of the lower
modes. A smaller velocity is needed for higher modes because the fluid motion under
the higher mode oscillations is perpendicular to the radial vortex motion that
increases circulation. For the (1,1) mode, the majority of the fluid motion is through
the center of the cell, and therefore higher peak velocities are required. It also appears
as though it is easier to swirl thinner films, but at some point the frequencies of thin

films get too high to work with easily, and this is not represented in the figure.

The power data extracted from the series studies contained some ambiguities. We
expected that a sharp increase in power usage would occur at the onset of swiﬂing.
The (1,1) powér results (figure 5-14) did indeed turn up, but the powers from both
sets of (2,1) series results (figures 5-15 and 5-16) bend only slightly,lif at all. To look
more closely at the data at the ends of the curves, we extracted the drag force on the
vortices, ¥, to see if it changed while the film was swirling. We found the drag force

by writing the power as the drag on the fluid times the fluid velocity squared:
P = (F : v)!ime+space - ('YV . v)ﬁ_mle+y{;acg ’ Areaceh‘ 5_3

Substitution of the peak fluid velocity,

5-4

Jac >

n
V=20 7 B
where By, (.5 for the (1,1), .36 for the (2,1), and .332 for the (3,1)) comes from the
Bessel factors averaged over the cell, yields a form of the drag force inversely
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Film Thickness
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Velocity at Which the Film Swired

Figure 5-13: Film thickness vs. peak velocity where the film swirled, and by which
mode. Some older data at thicker films is included along with the data from the series
studies. 1 =(1,1) data, 2 =(2,1) data, and 3 = (3,1) data.
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(1,1} Bown Scan
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Figure 5-14: Power vs. peak velocity squared for the (1,1) downward scan data in
figure 5-10.
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(2.1) Surf
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Figure 5-15: Power vs. peak velocity squared for the (2,1) surf data in figure 5-11.
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(2.1} Down Scan

50.
30
g
£
@
=
[o]
o
10
-10
0 0.5 1.0 15 20 413 2.5
vZin (m/s)?

Figure 5-16: Power vs. peak velocity squared for the (2,1) downward scan data in
figure 5-12.
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proportional to the peak velocity squared

= 5-5
b NEN

The units of vy are force per velocity per area. The power, P, is from the calculation in
Chapter 2, and the area (like the Bessel factors in v) comes from the average over the
cell area. The drag force data (figure 5-17) did not yield much more information than
to confirm that the drag forces are all comparable until the (1,1) force increases. It
should be noted that the (1,1} peak velocities are in general higher than those of the
other modes, so it is possible that the other modes’ forces would increase if the higher

velocities were reached.

Given no obvious increase in power usage for the (2,1), we may tentatively conclude
that there are many more vortices in the cell than we had previously thought, and that
the net shift in vortex position that caused the swirling was a very small part of the
overall vortex motion. A preliminary calculation of the power using the FlowFld
program with a constant vortex density in the cell predicted that approximately 10
vortices would need to move to account for the experimental power. This information
is consistent with STM data indicating that there are 100 10" pinning sites
available in the cell. Fewer than 1 in 100 pinning sites could be occupied, spacing the

vortices such that none could feel any significant influence from the others.

More data to investigate higher peak velocities at thicker films is in order. It is clear
that there are two ways with which we can swirl the films, but whether the
mechanisms behind them are different remains to be seen. If drag forces for the (2,1)
and (3,1) modes increase at higher peak velocities, our work will be simplified, but
until we can account for the concentration of vortices in the center of the cell after

swirling, an understanding of the behavior of the vortices in the cell is still far away.
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(1,1} Down Scan
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Figure 5-17: Viscous drag forces as a function of peak velocity squared for the data
in figures 5-10, 5-11, and 5-12.
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Appendix A
APPENDIX A

Cell Building Procedures and Methods

This is the history and documentation for a cell to replace the current one. It was not

completed at the time of this writing.

We began with the goal of using a substrate other than glass in our capacitor
construction because of the inconvenient dielectric properties of glass at low
temperatures. Quartz was a logical replacement because we had some large pieces
that we had used for the capacitor for the film thickness calibration (Appendix B).
Unfortunately, holes were too difficult to drill in the quartz. We had to first etch the
pieces coated in wax in hydrofluoric acid and then send them out {0 a company that
could drill the holes with a CO, laser. The thickness and size of the etched areas were
difficult to predict, as the pinholes in the wax were not uniform and hard to regulate.
Also the laser company was not able to drill small enough holes to suit us. After we
found a brochure from another company that suggested that holes were much easier to
drill in sapphire, and we proceeded with that. Pieces ordered from ESCO were sent to

an eximer laser company in NH, where the holes were drilled.

The next hurdle was making gold stick to sapphire. By itself, gold does not stick well
to sapphire, even less well than it does to glass, and the In-Pb solder for attaching the
silver alloy wires would not wet it. We tried both chromium and txtamum under the
gold, and if the boat and wire are correctly positioned as described below, either one

works. The films and solder both stick very well. We chose to use titanium.

The pieces were prepared by scrubbing them with a kimwipe in ammonium hydroxide
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and let them sit in the NaOH in the ultrasonic cleaner for five minutes. Tt worked best

if they were placed in a small plastic cup on edge, propped against the edge of the
cup. They were then placed in trichloroethylene in the ulirasonic cleaner, and finally
dipped in water and blown dry with dry nitrogen gas. When they were ready to be
placed in the evaporator, we put the titanium wire parallel to the gold boat
approximately an inch apart with a baffle equidistant between them. Without the
baffle, neither titanium nor chromium worked; in both cases, the gold was
contaminated during the evaporation of the other metal, and during the gold

evaporation the vapor pressure was not high enough to deposit much gold.

The pieces were secured in their masks and properly aligned. The small piece of
sapphire had a simple mask made by drilling two overlapping holes in a sheet of
brass.: The larger hole had a diametér 4 mils larger than the %”’gasket punch, which
was actually larger by several mils. The mismatched sizes allow the gasket and the
deposited gold to be aligned visually later. The large mask used two crossed wires
and a loop to divide the capacitor plates and was more difficult to work with because
the wires had to be very tight across the surface of the sapphire. The top wire of the
two that crossed was particularly difficult to keep tight. If any of the wires was not
close enough to the surface, bridging of the plates by the Ti was inevitable.
Fortunately, bridged plates may be reused. The gold comes off in aqua regia, which
is 1 part HC! and 3 parts Nitric acid, in about 15 minutes. The Ti will come off after
about 3 days in Sulfuric acid.

After 10-20 evaporations the gold became contaminated déspite the baffle and had to
be replaced. The Ti wire was only good for about 5 evaporations because it gets
thinner and more brittle. For the first evaporation, a current of 17 A may be used, but

by the fourth or fifth, only 12 A may be necessary. The current must also be turned
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up slowly (approximately 2 A/min over 7 A worked well} so that the wire does not

burn out prematurely.

The gluing stage was made more complicated by the sapphire also. The etched circle
that was in the glass cell would have been very expensive to replicate, and we wanted
to avoid having a ditch at the edge of the cell. Instead, we used a paper gasket cut
from capacitor spacing paper with gasket cutters to make a ring with an inner
diameter of ¥4’ and an outer diameter of 5/8°°. The paper is found in old capacitors,
and the oil in it must be removed by soaking it in trichlorethylene and methanol.
After the sapphire pieces with newly deposited gold had been wiped on lens paper
and the wires attached to the five plates on the big sapphire piece, the big piece was
placed on the gluing apparatus. Then the gasket and the small piece were put on top
of it. The inside of the paper doughnut was aligned with the outside of the evapbrated
circle on the smaller sapphire piece. The hole of the small piece had been aligned in
the mask. The electrodes on the larger piece were centered on the hole where the
wires in the mask crossed before evaportion, and the holes in the two pieces were
aligned under the microscope using the microscope light showing through from the
bottom. In bright enough light, the cross in the big piece was visible through the

small piece as vague purplish lines, which were useful as a guide.

When the paper and the holes were aligned correctly, a small rectangular piece of
microscope slide was placed over the top hole to close it and the fingers of the clamp
could be lowered. The glass covering was made to fit under the clamp and not
obscure the gasket area. The clamp was cranked down so that the unglued cell would

not flap when air pressure was applied later.

The gluing process was the most difficult. The first step was io determine which
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glues crack at low temperatures. The glue used for the glass cell was gone, and we

decided to try something less expensive. We first settled on two-ton epoxy diluted to
the proper runny consistency with methanol, but approximately one in ten times the
glue formed a brittle surface. It was unclear if an adulterated glue would be reliable.
Five minute epoxy and super glue both cracked at 77 K, but the diluted two ton epoxy
held even when the pieces were dropped directly in the nitrogen with no prior cool
down. Unfortunately the 2-ton epoxy hardened too fast and we had to switch to the
Stycast 1266.

The glue was to soak into the paper, and if the center was pressurized correctly, not
soak into the center of the cell. The trick was to get the glue in fast but then slow
down as it got to the inner. edge of the gasket. I found a pressure of 2 PSI over the
ambient atmospheric pressure allowed the glue to seal evenly when it was first
painted on (with a small brush, as fast as possible without making a big mess). Then
the pressure could be reduced to .7 PSI over an atmosphere until the glue got to the
boundary, when it should be turned up to .8 PSI to keep it from getting into the cell.
(I never had much luck with this, but we ran out of gold and parts before I got too
far.) If the gluing stage fails, the cell may be placed in tetrahydrofluorine for about 3
days. The glue is jelly-like at that point, and it gets into the holes in the sapphire and
no way to remove it has yet been devised. At this time there are parts for two trial

cells left out of five.
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APPENDIX B

Capacitor Experiment to Convert Room Temperature Helium Gas Volume to Film
Thickness by Measuring the van der Waal’s Coefficient of Gold Evaporated on
Quartz

Our previous values for film thickness relied on an average of several different values
of the van der Waal’s coefficient of helium on gold, Ty. We were unable to make our
own measurements because useful data was masked by the peculiar dielectric
properties of our glass substrate at low temperatures, which we eliminated for this

experiment by switching to a quartz substrate.

We constructed a 32 pf capacitor by evaporating a 1000A layer of gold on quartz
pieces and gluing the gold faces 12 pm apart. The capacitor was connected to the
tunnel diode oscillator (TDO) circuit and placed under the mixing chamber of the
dilution refrigerator with a capillary to allow helium into the capacitor region.
Because helium is a weak dielectric, superfluid film on the capacitor plates resulted in
a change in capacitance in the TDO circuit that was monitored using standard radio

frequency detection techniques.

The thickness calibration was carried out by finding a relation between 4 and the
measured frequency. To begin with, we mathematically divided the capacitor into
three capacitors in series to account for the film on the top plate, the film on the

bottom plate, and the gap between the films.

1 1 1 1
c ¢ C C B-1




Appendix B
h is the film thickness, and d is the gap between the plates minus twice 4. Next, the

TDO frequency could be found

1
TonJIC

By taking some derivatives and rearranging, a relation for the relative frequency

f B-2

change can be derived

o __14C B-3
f 2 C
Then we find the capacitance of the whole gap
gg, 4 B.4

= 0" _4C
£ ed-2he-1) °

where g, = penﬁittivity of free space, € = permittivity of helium, and C = stray
cap;acitance. By taking the derivative of the gap capacitance with respect to h, we can
find a relation between the change in film thickness, 1), and the RF signal we detect.
l1-¢
% = (_sc-i)—r—l B-5
This result is useful, but still fails to tell us the film thickness because we do not know
d if we do not know 1. Using the change in capacitance from the empty cell to the
full cell to calibrate d and employing eqn B-3 we find:
Af G,
7 - ge  Af f

where C, = capacitance of the cell when it has been filled with helium, Af, ; =the

B-6

change in TDO frequency from the empty cell to the full cell, 4 =the area of the cell,
and f, =the TDO frequency when the cell has been filled with helium. A little

algebra and the substitution of /4 for | yields the following:
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— EgoAff fh _“f‘e B-7
2C, 0., J.
where f, = the TDO frequency when the cell is partially filled. The datacanbe fittoa
line
h=K(f, - 1.) B-8
where X is the slope, given by
g, A
K= ___Q-!___ . B-9
2Cf A.fe—f fe

Thus, the film thickness was easily determined (figure B-1).

Having calculated 4 to our satisfaction, we could compare the experimental 4 values
to the theoretical relation between third sound and 4 to find our own value of Ty.

3
¢, =h(13-U(z)) gfﬁ(z—‘) 2-16
oz

h ) m, \h _
we find a simple relation between the film thickness and the wave speed. In fact, to

be extremely accurate, there are many factors that can be included:

3
sz&(h-d)?:ksfl},(z_l) 1 517

3
h
p mg \NZ (H_i)
Zr

After taking the log of both sides of the equation, the data can be fit to a straight line,

and the Van der Waal’s coefficient can be extracted. From figure B-2, the slope of

the line is

slope = %ln[%sz ) B-16

my

Having determined the value of Ty, the conversion from ¢; to & is a matter of using
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total frequency change vs film thickness {run 5}

1500 y T v T v , . T
o
s G-'.
:’E‘ 1000 ) 8
p ,O"
[49)
c Lo
@ .
3
o
e
- &
o] -
= o
& 500+ “g" 4
"E'-
.‘0’
o
s
o
0 1 1 1 H
0 2 4 6 8 10
h {nm)

Figure B-1: An example of the total frequency change of the TDO circuit as the film
thickness in the single capacitor was increased.
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6 runs of capacitor data
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2.0 . . . : : : . :

1.5

log(c3)

1.0 §

0.5 foqn: -2°x+b+.5'T0g(10%d)-.5"log(1+10%a), R:0.0689,

La=58.6465, b=-11.4784, d=6.423168-010 : 1
-9.2 -8.8 -8.4

log(h)

Figure B-2: An example of data used to find Ty.
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equation B-15.
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third sound vs thickness for 5 runs with the capacitor

75 M T T T T T T
[::]
60 £ 1
sl F ;
o)
[&)
I [::]
30 b 3 ]
o
15 F en&. 3
e ¥ g
[~} ®
a% °
| ) Oée * a4
0 1 - 1 i L L " L :
0 0.2x10® 0.4x10% 0.6x10% 0.8x102 1.0x108

thickness in meters

Figure B-3: Our calibration of third sound speed (m/é) vs. the film thickness.
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APPENDIX C

MathCad documents:

1. Calculation of the flow field in the cell from splitting data.

Back of the envelope power calculation
Resonator information

Drive and pickup information

bl S e

A mathematical calculation of splitting proportionalities
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Appendix C
FLOW FIELD ANALYSIS FROM THE 123 MODE SPLITTINGS - 7/21/93

The matrix M represents the circulation perturbation canstants for the (1.1}, (2.1), and (3.1)
modes, {rows) for flow fields of the form 1/r. 1, and r (columns),

127 153 089
(117 630 409

’\1.13 755 549
\ i

My

.e. the shifts of the first three modes due to the flow field

[ N Co |
£\ :

]

I a ) :

v{ry=C 3‘5°0',I T cz-al is Y2 'MY' € i
‘ g Bl e

From the expenmentat shifts of the 1.2, and 3 modes,

i
.0089\
y =|.0104
.mm/

find the “strengths" of the 1/, 1. .and r flows

000652
¢ =Myly  or  c=|964352.107F
0.0052%

and plot the flow field, v(r). and the vartex density, n(r).

6.646-1060* C3
C1:=1000 a.-.615 Ny m— e Np =, in ‘2-1:-33
3 0 ewi0? & 0 °(°

i 1
x:=.02,04.1 v(x) =C 3'(%"{ +E + cz-x) afx) =n D-GI-; + 2-c2>

10’

400

g0t ‘ -
300 :

s10*

o(x) \ :'
a10®

Ng =232747-10°
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Now predict the shifts of higher modes based on their perturbation constants. The ordar of the
rows is (1.1}, (2,1}, (3.1). (1.2), {5.1). {2.2). and (6.1).

i1
First add a zero element to c.__ ¢ augment idemity(l),ifo -
: o
’i 1
Now multiply out perturbation constants. .
[1.27 153 089 074! 7 0.0089 00817
L.I7 630 409 295: - 00104 ;00668
113 755 549 423 | L 0011 | 00588
My =136 331 173 104 | Y sMye Y =i 0.0101 {exp)= | 00980
1.09 849 683 565 foous4 | 00543
134 538 284 173 . 0.01076 | 01160
[1.08 872 721 .609 i eon17 1.00549

Besp X

den, ., :=n(x) vd, oy =¥{x)

WRITEPRN(density) ‘= augment(a,den) ;

WRITEPRN{ vdrift} =augment({a,vd)}
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DRIVE CAPACITOR POWER

Assume that the film adsorbed on both suffaces a parallel plate capacitar is oscillating in
response o an oscillating applied voltage. Find the mechanical power applied to the film by
calculating the elfectrical power supplied by the drive source.

_ ot note that the drive is half the
drive voltage V{)=Vgcos o frequency of the response

VS

film thickness h(t}=h g + n-cosfem-t + ¢ 0}
N
Co c i
capacitance (= _7,__ __E__\__ g s the emply capacitance
.U NP g isthe plate gap
\ £ is the helium permitivity

The work done in gach cycle of thickness oscillation can be found by the electricai work done
by the voltage source, and the power is this work times the frequency.

d d
do=v-[clv . vidcla

dw=v-dQ=v-|c-Lv cHc/ i
2-m I
o ® 4 d i
el vfe.e a4 :
Peo L vleLvevic)a |

0

Expanding the small thickness term jn the denominator of the capacitance and throwing away
the terms that integrate to zero leads to the result,

lf E \
1 M oy . N
P oC e'Voz'g'“ ey j'fﬂ“@ 0.

Taking the thickness oscillations to be the film thickness, and the phase for maximum power
gives the standard power unit for the resonance experiments.

hyp ;" Eo

! 2
PU’Z-Q-CO-VO . e ol e

With typical numbers for the present drive plate,
E 0'1‘('3"

ep 88510 & 105SEp 2 00615 g 9610° w 410 Cy 1g

Vg 108 hy 29310°
h EQ

4 - 0P ~ 11
5 C VoA -G 358273-
4€|.|C0 o g I c 58 10




TWO DRIVES

Appendix C

In the rotating drive configuration, the two drives just add their power together, provided the
drives are phased correctly. For odd modes, this is a 90 degree delay in the drive forces for the
90 degree plate. For even modes, the 90 degree plate must be driven at 180 degrees. The
thickness oscillation “efa” must be replaced with an average over the drive plate. With the

rotating wave definition

h=h g+ 1 g9-J (ke)-cos(mé - wt)
and power definition

P=f P 0-:—g-cos<d> ] m)

&m isgiven by

Xm
Em= ,,Jf___z. |sm<%_n>i J X-J (X} dx

0

calculating out. .

1.84118
3.05424

641562
| 7.50127 |
moox Em
1.84118; 0.85097
3.05324 043307
420115 [O.X81Z7
53T ]
641562 [0.0892%
750127 (007173
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X = 4.20019 16 , . [mx I J.
e sinf—— ] - x-Jnfm,x) dx
5.31755 & _m~1:~(xm)2 (4 ) 0 nlmx)
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CIRCULAR RESONATOR
Bessel function  J (kr)-cos{m$) with d_xj m{x)=0 at x . k=x mn
iy
m [ n =l
: 168 ‘\ i 3
« mon- 674m* . g7 956 X mn oot & In(m,x).x]
n / \fix ,
I
not Convergng
f In/m 1l m2
mn im ) Yems = 5.‘;: St {over area)
A
StandingWave... hg =1 n =04 a=18 ¢ 30 k:-— o ¢
hir,4,t) =hg +nn{m, -r)-cos{m-$)-cos{ -1)
| d H
-—-&}Jn(m. -r)-cos{m-¢} .
() <o L i 1)
0 L in(m, 1)-sin(m4) |
(1g
g | T gin(m, r)-cos(m-$)
8rd0) = o
Zoin(m, rysin{m-4)
L i

Travelling Wave. ..

h{r.$,t) <hgy+nJn(m, -r)-cosfmd- -1)
l 4 . i
" {_—(Trjn(m. ysin{m-¢ - 1)
vir,d,1) :c-ﬁ-’
l ..“.lr-jn(m, -r)-cos(m-¢ - -t)
g ycostmd . )
r :—-ain(rn. ry-cos{trd - 1)
8r.d.1) = “ﬂ‘
n_’fvln(m, rysin{m-¢ - -t}

Peak velocities always occurs in azimuthal component
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CAPACITIVE THIRD SOUND RESONATOR

imagine that the mode in question is rigid in the sense that even at DC, the mode retains it's shape.
et the mode be described by an amplifude and a uniless mode function:

h(r.d.0=h g+ Aw(ebye ' -

If this is the case, the electrostalic energy change due to the mode within the drive plate is given by

AUE=i u, dve % e-so)-Ezn-q)(r,MdA {2)
.Idn'vc

drive

This the Van der Waals energy change associated with the same mode is

E L]
1
AU v"[ u adA:J- —2--p~l'~r|2~q12dA (3)
11

ce cell

Equating the derivitives with respect to amplitude gives the DC mode amplitude, written in terms of
the flat film DC thickness shift

drive e a\-B2
=N 0T n o=;~'(—p_0‘l‘ (42,4b)
[, ¥

Now, tuming on the AC excitation of the mode, noting that the AC oscillations are between 0 angiy,
i
e i.q dc
n - -
ey )
og] Qay

With a pickup capacilor that responds to a uniform DC shift by df/dh, the mode wiil contribute
according to its average height:

a1 "
A —1  w(ng)dA (6}
pick Jpick

The drive and pickup integrals are more conveniently expressed in terms of normalizations to the
whole cell:

1 “u I B
J wir.g)dA P= . w(r.¢1dA (N
Acell Jdrive Acelt Jpick
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Put everything together

I
2 =7
df A ceil 210
AP Y S U (8)
foa | o VA TG0 S Gay
pick cell 1] Q 0

f the cell is a circle, radius a, with plates symmetric about y=0, only the cosine modes couple

A N .
=) kg r) cos(m-$) (%a)

I 'J' *da= L T i) -#)-cos{ m-¢ ) dr ¢
I A R R

I

- a
K;‘;H.Jc'e“ q’zd,.s\=;lz..L Jmc(mn.,)z.r@%-[i- G‘::)IJJ m(xmrDZ (96

Inctuding this
f A no
a3 p. ‘";_"“ D >
A [l o ]J ("m)Z] T A (1
ik || 1T 7 T m Tlwg] " Oag
e o) "%
Co . A £g Af ac
The pickup capacitor response is found from c—"::z-—- 1-— | and ~?=é— c L4 giving
p 4 £ total
£ C
.'Ezf_" 1___0._?.., (i
dh g €/ Cow
The "mode sensitivity” can also be written as
FiT S T df Acey
[ = w(r.é) da= L p (12)
™ dh Apick inckup dh Apic_k

Summarizing the results of Hai's thesis, for an arbitrary finear combination of the m modes. the D
and P should be replaced by the two component vector dot products

a-D a-P {13}

The vector a is normalized and has components coresponding to the right {+m)} and left {-m}
potarized wave components so that the appropniate wave function is

w(r.¢)=1m-km-r'- a-e é g et me {14

L] m

. - 3. - - 5
Tha intanrats with w™ in {4} and (RY remamn intearals ovar tha tandinn wave function 18a1 nat 14y
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The integrals with w 1n (4) and (8) rematn integrals over the standing wave function (9a), not (14),

and D and P have components given by,

1
D=

1 N -1 omg 1 1 N i mé
m - r" ijmn'D'e dA Pm- I f\ N }m(kmn'r)-e dA (15}
Y2 Teell w2 Tt pick

drive
A few of the definitions are different from the notation in Hai's thesis:
1} D and P in {7} have been defined to be the same as the drive and pickup averages in the program
fmncalc, and in {15) also include a “normalizing root” 2. The definitions in Hal's thesis also nomalize

the integrals as in (4) and (6) as opposed to the cefl area.

2) The DC filmm response (4b) to a field is incorrectly identified without the factor of 1/2 in Hai's thesis.
The algebra in the thesis is still OK as he states i,

3} The drive integral in Hai's thesis includes a strength function G. Here it is assumed that the
integral over the drive can be broken up to include drive plates with different phases.
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CIRCULATION SPLITTING FACTOR CALCULATION

The evaluation of the circulation factors is done in three places, and they all agree,

linearization of the equations of motion and an aﬁaly‘tic perturbation {in the circulation)
treatment... (notes in the rotational ¢3 folder)

_\/
Jn{m- 1,x) - Jn{m ~ 1,x) J/JH G )

m =1 xm {84118 Ip(x) 3

XM
-

f{x) (%) m

Tm ° ;
" ‘..)cm2 - mz)-.ln(m,xm)z

2-Jp(x)-Jn{m,x) d

2
f{x)-2-Jn{m,x}" - ~

Ll xy) &

[ S
=

Y =1278

278 (1088 0886
the model flow matrix is... M ={1.170 6295 4090
1.129 7550 .5490

The periurbation integral is calcutated while the appropriate solution to Bessels equahon are
integrated. (same notes in the rotational c3 folder and CIRCFAC.BAS)

The linearized equations of motion are direclty integrated. {notes in the rotational c3 folder and
DIRECT.BAS and DIRECT1.BAS)

1.263 .1443 .08%0
both resuits forg = .025 ... M =1 1L171 6295 .4090
1.129 7551 5490

Both the m=1, v{r)=v(a) and the m=1, v(r}=v(a)*a/r terms deviate from the analytic perturbation
because of the hole, and agree with itin the limite = 0
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APPENDIX D

Three Different Calculations of the Relative Amplitude of a Wave

The relative amplitude of third sound waves can be theoretically calculated using data
on the drive plates and the appropriate electromagnetic theory. Before expounding on
the details of the different methods, a common ground for comparison must be
established. Depending on where the calculation is used, it may be set in different
forms. MathCad documents tend to use the complex formulation, and QB programs

use the real version. Both versions can be derived from equation 2-15.

ny
n_ h D-1
h 2
\/ 4(3 - 1] F—
@y 0
Mo
o h
= 5 D-2
@y - ( o J _ o
W Ow,
1) My way:
E
=0 — D-3
Q P
The energy comes from Appendix C, mode h v.mcd
2

where J . is defined in Circular Resonator {Appendix C). P is the power in Chapter
2.
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Isolating n/h gives us the first value for the relative amplitude:

V;so[l—iJ
1 €4/ ® . |mm

= 2 1 a3 ——5m
mnxmn g pC3 mrs(xmn)m()

4

Mo
h

[J.(x)xdc D-5
hi]

This same form can be found from whatever.mcd in Appendix C, but using that

calculation of &_, the result is 2 the above result.

2) Hai’s way:
Following Capacitive Third Sound Resonator in Appendix C,

2 V xmﬂ
Mo _ 1 Fole-e,) ﬁsin[u’-’-’-’i] [J.@xdx D6
ho 2mn gpes o (%) © N2/

3) Fmncalc’s way:

2 Vigle-1) .(Batm

up )""‘"
— = sin J (xX)xdx D-7
Py s e o
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APPENDIX E
Simulation of the Swirling Process

Using a conglomeration of programs, caicuiations, and models, we have attempted to
simulate surfing. We began by selecting a mode, resonance frequency, and a
reasonable critical velocity and then stepping the frequency starting below resonance.
A theoretical expression was used at each frequency to calculate the amplitude of the

wave and the fluid velocity under the wave. The theoretical amplitude was given by

Mo
n._. h

4[3—.1T+i ' o
o, Q2

M, was derived from the following relation:

E
=) —. E-2
Q P
where F is the energy used in a cycle
2 .
E = (pna’hy)c;’ (%) (Vs Y, E-3

and

1 2
g = \/5 (1 —%J (7 o)) - B4

ma

Solving for the relative amplitude yields
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50(1—8—"]1/{3
Iy © e/
4°"w, cipg’J:

s
£
£ 0(1 - _O] 4
1 ) £ . |m
= szn|

2 22 72
2mm,, ®, Cipg Jou

Mo _
h

4“ {ITJ,,, (X)xdc  E6

0
Several other formulations of the amplitude can be found in Appendix D. At the
point where the fluid velocity exceeded the critical velocity, the new flow field was
found as in Chapter 4. The amplitude at which the critical velocity was exceeded was
given by

v .
T] — CcHt E"?
€3,

where the radius, r, is the scaled radial position of the peak flow under the wave.

From the new flow ficld, we calculated the splitting of the mode and the density of

vortices
7]
v(r)=——[NU+ n(r)andr] E-8
mr
:_@_(%1 r) £.9
)= i\ T )

With a simple accounting of the distance the theoretical vortices move during the
flow field calculation and a vortex drag force against the substrate, we can find the

power used to swirl the theoretical film at each radial position.

2 2
v +v,

db E-10

V..
power = ~L
2n

where v, and v, are defined as
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a 0
v=|-b a 0-v, E-11
0 01
2 2 2 2 2
vo(l+ +y  =1=-2v v (l+ -1
ae Vsl '}’)"{2 ;wzs( Y5 E1D
v, (L+77)
VA+v ) =D+ 1=y i1 +y2) -1
R ACACE D, )2 ( Zz)\/vs( Y7 E-13
vi(l+y7)

(see Appendix D). All velocities are scaled to the critical velocity.

Using p(r) and the vortex density, we calculated the total power used during a

swirling attempt:
P =2n [p(ryn(rrdr . E-14
0

We compared the power used by the moving vortices while finding the flow field to
the theoretical power calculation to find the phase of the resonance.
P

|
P —
émﬂk

The two calculations are not compatible in that in some cases the sine of the angle

sin(9 ) = E-15

was found to be greater than one. However, if it was less than one, it provided a
satisfactory method for finding the Q of the resonance so that we could use Q, the
splitting, and the driving frequency to determine the location of the newly shifted

mode and our new position relative to it.
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.
sin’ (9)

O=———"5 E-16
4(4—1}
Jo
fshifted:fo(1+8) E-17

The Q dropped similarly to experimental Q’s during the simulated surf, but dropped
much more rapidly as a function of shifted frequency. A plot of the theoretical

surfing behavior was very foreshortened and did not resemble experimental data.

The following figures show the current progress of this program.
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Simulated Surf of (2,1) at f =1000 Hz
0.16

0.12¢

0.08

amplitude

0.04;

999.0 999.2 999.4 999.6 999.8 1000.0
frequency (Hz)

Figure E-1: The program fails to simulate the surfing behavior for more than a few
frequency steps.
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Q of resonance

Simulated Surf of (2,1) at f=1000 Hz

Appendix E

4x10°
0
axi0®
\D
2x10°%}
1x10°}
a Qa
T d
0 999.953 999.957
frequency (Hz)

Figure E -2: The Q of the resonance drops, as it should, and is of the same order of

magnitude as experimental Q’s.
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Simulated Surf of (2,1) at f;=1000 Hz

drift velocity in cm/s
F-N

radius

Figure E -3: The flow field generated during the simulated surf.
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Simulated Surf of (2,1) at f;=1000 Hz

Appendix E

1x10'}

-1x10'°}

density of vortices per cm*
e

radius

Figure E -4: The density of the vortices as arranged by the simulated surf.
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Simulated Surf of (2,1) at f,=1000 Hz

1.6x10°"

1.2x10™"

0.8x10°"

Power in Watts

0.4x10°"7

radius

Figure E -5: The power as a function of radius that was used in the calculation of the

total power used.
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